Abstract
We propose a non-interactive product argument, that is more efficient than the one by Groth and Lipmaa, and a novel shift argument. We then use them to design several novel non-interactive zero-knowledge (NIZK) arguments. We obtain the first range proof with constant communication and subquadratic prover’s computation. We construct NIZK arguments for NP-complete languages, Set-Partition, Subset-Sum and Decision-Knapsack, with constant communication, subquadratic prover’s computation and linear verifier’s computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct Non-interactive Arguments via Linear Interactive Proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)
Blelloch, G.: Vector Models for Data-Parallel Computing. MIT Press (1990)
Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Applications. In: STOC 1988, May 2-4, pp. 103–112. ACM Press, Chicago (1988)
Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boudot, F.: Efficient Proofs That a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)
Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)
Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)
Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In: Vitter, J.S. (ed.) STOC 1998, Dallas, Texas, USA, May 23-26, pp. 209–218 (1998)
Chaabouni, R., Lipmaa, H., Shelat, A.: Additive Combinatorics and Discrete Logarithm Based Range Protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)
Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-interactive Range Proof with Constant Communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012)
Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 19, 297–301 (1965)
Dybizbański, J.: Sequences Containing No 3-Term Arithmetic Progressions. Electron. J. of Combin. 19(2), P15 (2012)
Elkin, M.: An Improved Construction of Progression-Free Sets. Israel J. of Math. 184, 93–128 (2011)
Erdős, P., Turán, P.: On Some Sequences of Integers. J. London Math. Soc. 11(4), 261–263 (1936)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)
Gentleman, W.M., Sande, G.: Fast Fourier Transforms — For Fun and Profit. In: Fall Joint Computer Conf. AFIPS Proc., vol. 29, pp. 563–578. ACM, Washington, DC (1966)
Gentry, C., Wichs, D.: Separating Succinct Non-Interactive Arguments from All Falsifiable Assumptions. In: Vadhan, S. (ed.) STOC 2011, June 6-8, pp. 99–108. ACM Press, San Jose (2011)
Goldwasser, S., Kalai, Y.T.: On the (In)security of the Fiat-Shamir Paradigm. In: FOCS 2003, October 11–14, pp. 102–113. IEEE (2003)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems. In: Sedgewick, R. (ed.) STOC 1985, May 6-8, pp. 291–304. ACM Press, Providence (1985)
Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)
Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)
van Hoeij, M., Novocin, A.: Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 539–553. Springer, Heidelberg (2010)
Joux, A.: A One-Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Mathematische Annalen 261, 513–534 (1982)
Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)
Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)
Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Programs and Linear Error-Correcting Codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013 Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)
Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold Trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003)
Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive Zero-Knowledge Shuffle Argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)
Pippenger, N.: On the Evaluation of Powers and Monomials. SIAM J. Comput. 9(2), 230–250 (1980)
Rial, A., Kohlweiss, M., Preneel, B.: Universally Composable Adaptive Priced Oblivious Transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009)
Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairing. In: SCIS 2000, Okinawa, Japan (2000)
Sanders, T.: On Roth’s Theorem on Progressions. Ann. of Math. 174(1), 619–636 (2011)
Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Fauzi, P., Lipmaa, H., Zhang, B. (2013). Efficient Modular NIZK Arguments from Shift and Product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds) Cryptology and Network Security. CANS 2013. Lecture Notes in Computer Science, vol 8257. Springer, Cham. https://doi.org/10.1007/978-3-319-02937-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-02937-5_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02936-8
Online ISBN: 978-3-319-02937-5
eBook Packages: Computer ScienceComputer Science (R0)