iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-02714-2_15
Social Behavior Modeling Based on Incremental Discrete Hidden Markov Models | SpringerLink
Skip to main content

Social Behavior Modeling Based on Incremental Discrete Hidden Markov Models

  • Conference paper
Human Behavior Understanding (HBU 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8212))

Included in the following conference series:

Abstract

Modeling multimodal face-to-face interaction is a crucial step in the process of building social robots or users-aware Embodied Conversational Agents (ECA). In this context, we present a novel approach for human behavior analysis and generation based on what we called “Incremental Discrete Hidden Markov Model” (IDHMM). Joint multimodal activities of interlocutors are first modeled by a set of DHMMs that are specific to supposed joint cognitive states of the interlocutors. Respecting a task-specific syntax, the IDHMM is then built from these DHMMs and split into i) a recognition model that will determine the most likely sequence of cognitive states given the multimodal activity of the interlocutor, and ii) a generative model that will compute the most likely activity of the speaker given this estimated sequence of cognitive states. Short-Term Viterbi (STV) decoding is used to incrementally recognize and generate behavior. The proposed model is applied to parallel speech and gaze data of interacting dyads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Otsuka, K.: Multimodal Conversation Scene Analysis for Understanding People’s Communicative Behaviors in Face-to-Face Meetings, pp. 171–179 (2011)

    Google Scholar 

  2. Scherer, S., Marsella, S., Stratou, G., Xu, Y., Morbini, F., Egan, A., Morency, L.-P.: Perception markup language: towards a standardized representation of perceived nonverbal behaviors. In: Intelligent Virtual Agents, pp. 455–463 (2012)

    Google Scholar 

  3. Argyle, M.: Bodily Communication. Taylor & Francis (1975)

    Google Scholar 

  4. Lakin, J.L., Jefferis, V.E., Cheng, C.M., Chartrand, T.L.: The Chameleon Effect as Social Glue: Evidence for the Evolutionary Significance of Nonconscious Mimicry. Journal of Nonverbal Behavior 27(3), 145–162 (2003)

    Article  Google Scholar 

  5. Kopp, S.: Social resonance and embodied coordination in face-to-face conversation with artificial interlocutors. Speech Commun. 52(6), 587–597 (2010)

    Article  Google Scholar 

  6. Bailly, G., Raidt, S., Elisei, F.: Gaze, conversational agents and face-to-face communication. Speech Communication 52(6), 598–612 (2010)

    Article  Google Scholar 

  7. Gatica-Perez, D.: Automatic nonverbal analysis of social interaction in small groups: A review. Image and Vision Computing 27(12), 1775–1787 (2009)

    Article  Google Scholar 

  8. Otsuka, K., Sawada, H., Yamato, J.: Automatic inference of cross-modal nonverbal interactions in multiparty conversations: ‘who responds to whom, when, and how?’ from gaze, head gestures, and utterances. In: Proceedings of the 9th International Conference on Multimodal Interfaces, New York, NY, USA, pp. 255–262 (2007)

    Google Scholar 

  9. Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Modeling individual and group actions in meetings with layered HMMs. IEEE Transactions on Multimedia 8(3), 509–520 (2006)

    Article  Google Scholar 

  10. Salamin, H., Vinciarelli, A.: Automatic Role Recognition in Multiparty Conversations: An Approach Based on Turn Organization, Prosody, and Conditional Random Fields. IEEE Transactions on Multimedia 14(2), 338–345 (2012)

    Article  Google Scholar 

  11. Gatica-Perez, D.: Analyzing group interactions in conversations: a review. In: 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 41–46 (2006)

    Google Scholar 

  12. Cassell, J., Vilhjalmsson, H., Bickmore, T.: BEAT: The Behavior Expression Animation Toolkit (2001)

    Google Scholar 

  13. Krenn, B.: The NECA project: Net environments for embodied emotional conversational agents. In: Proc. of Workshop on Emotionally Rich Virtual Worlds with Emotion Synthesis at the 8th International Conference on 3D Web Technology (Web3D), vol. 35. St. Malo, France (2003)

    Google Scholar 

  14. Krenn, B., Pirker, H.: Defining the gesticon: Language and gesture coordination for interacting embodied agents. In: Proc. of the AISB-2004 Symposium on Language, Speech and Gesture for Expressive Characters, pp. 107–115 (2004)

    Google Scholar 

  15. Kopp, S., Jung, B., Lessmann, N., Wachsmuth, I.: Max - A Multimodal Assistant in Virtual Reality Construction. KI 17(4), 11 (2003)

    Google Scholar 

  16. Kopp, S., Krenn, B., Marsella, S.C., Marshall, A.N., Pelachaud, C., Pirker, H., Thórisson, K.R., Vilhjálmsson, H.H.: Towards a Common Framework for Multimodal Generation: The Behavior Markup Language. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 205–217. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Vilhjálmsson, H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp, S., Mancini, M., Marsella, S., Marshall, A., Pelachaud, C.: The behavior markup language: Recent developments and challenges. In: Intelligent Virtual Agents, pp. 99–111 (2007)

    Google Scholar 

  18. Heylen, D., Kopp, S., Marsella, S.C., Pelachaud, C., Vilhjálmsson, H.H.: The Next Step towards a Function Markup Language. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 270–280. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Thiebaux, M., Marsella, S., Marshall, A.N., Kallmann, M.: Smartbody: Behavior realization for embodied conversational agents. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 151–158 (2008)

    Google Scholar 

  20. Le, Q.A., Pelachaud, C.: Generating Co-speech Gestures for the Humanoid Robot NAO through BML. In: Efthimiou, E., Kouroupetroglou, G., Fotinea, S.-E. (eds.) GW 2011. LNCS, vol. 7206, pp. 228–237. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Bailly, G.: Boucles de perception-action et interaction face-à-face. Revue Fran\ccaise De Linguistique Appliquée 13(2), 121–131 (2009)

    Google Scholar 

  22. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. In: Proceedings of the IEEE, pp. 257–286 (1989)

    Google Scholar 

  23. Seward, A.: Low-Latency Incremental Speech Transcription in the Synface Project

    Google Scholar 

  24. Ryynänen, M., Klapuri, A.: Automatic Bass Line Transcription from Streaming Polyphonic Audio. In: Proceedings of the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1437–1440 (2007)

    Google Scholar 

  25. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, NY, USA, pp. 352–361 (2009)

    Google Scholar 

  26. Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.-Z.: An Interactive-Voting Based Map Matching Algorithm, pp. 43–52 (2010)

    Google Scholar 

  27. Šrámek, R., Brejová, B., Vinař, T.: On-line Viterbi Algorithm and Its Relationship to Random Walks. arXiv:0704.0062 (March 2007)

    Google Scholar 

  28. Bloit, J., Rodet, X.: Short-time Viterbi for online HMM decoding: Evaluation on a real-time phone recognition task. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 2121–2124 (2008)

    Google Scholar 

  29. Goh, C.Y., Dauwels, J., Mitrovic, N., Asif, M.T., Oran, A., Jaillet, P.: Online map-matching based on Hidden Markov model for real-time traffic sensing applications. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 776–781 (2012)

    Google Scholar 

  30. HTK, The Hidden Markov Model Toolkit, http://htk.eng.cam.ac.uk/

  31. Dunham, M., Murphy, K.: PMTK3: Probabilistic modeling toolkit for Matlab/Octave, http://code.google.com/p/pmtk3/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Mihoub, A., Bailly, G., Wolf, C. (2013). Social Behavior Modeling Based on Incremental Discrete Hidden Markov Models. In: Salah, A.A., Hung, H., Aran, O., Gunes, H. (eds) Human Behavior Understanding. HBU 2013. Lecture Notes in Computer Science, vol 8212. Springer, Cham. https://doi.org/10.1007/978-3-319-02714-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02714-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02713-5

  • Online ISBN: 978-3-319-02714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics