Abstract
The performance of multi-objective evolutionary algorithms (MOEA) is severely deteriorated when applied to many-objective problems. For Pareto dominance based techniques, available information about optimal solutions can be used to improve their performance. This is the case of corner solutions. This work considers the behaviour of three multi-objective algorithms (NSGA-II, SMPSO and GDE3) when corner solutions are inserted into the population at different evolutionary stages. Corner solutions are found using specific algorithms. Preliminary results are presented concerning the behaviour of the aforementioned algorithms in five benchmark problems (DTLZ1-5).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)
Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-Objective Optimization: An Engineering Design Perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: 2008 IEEE Congress on Evolutionary Computation IEEE World Congress on Computational Intelligence, pp. 2419–2426 (March 2008)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)
Nebro, A., Durillo, J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Miulti-criteria Decision-making, MCDM 2009, pp. 66–73 (2009)
Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450 (2005)
Adra, S., Fleming, P.: Diversity management in evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation 15(2), 183–195 (2011)
Deb, K., Jain, H.: Handling many-objective problems using an improved NSGA-II procedure. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)
Dasgupta, D., Hernandez, G., Romero, A., Garrett, D., Kaushal, A., Simien, J.: On the use of informed initialization and extreme solutions sub-population in multi-objective evolutionary algorithms. In: IEEE symposium on Computational Intelligence in Miulti-criteria Decision-making, MCDM 2009, pp. 58–65 (2009)
Singh, H.K., Isaacs, A., Ray, T.: A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evolutionary Computation 15(4), 539–556 (2011)
Bechikh, S., Said, L.B., Ghédira, K.: Searching for knee regions in multi-objective optimization using mobile reference points. In: SAC, pp. 1118–1125 (2010)
Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)
Deb, K., Miettinen, K.: Nadir point estimation using evolutionary approaches: Better accuracy and computational speed through focused search. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Walllenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. LNEMS, vol. 634, pp. 339–354. Springer, Heidelberg (2010)
Bechikh, S., Ben Said, L., Ghedira, K.: Estimating nadir point in multi-objective optimization using mobile reference points. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–9 (2010)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization (2008)
Corne, D., Knowles, J.: Techniques for Highly Multiobjective Optimisation: Some Nondominated Points are Better than Others, pp. 773–780 (2007)
Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualisation and ordering of many-objective populations (2010)
Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)
Garza-Fabre, M., Toscano-Pulido, G., Coello Coello, C.A., Rodriguez-Tello, E.: Effective ranking speciation Many-objective optimization (2011)
L’opez, A., Coello Coello, C.A., Oyama, A., Fujii, K.: An alternative preference relation to deal with many-objective optimization problems. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 291–306. Springer, Heidelberg (2013)
Jaimes, A.L., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: GECCO, pp. 673–680 (2008)
Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: Theory and applications. Evolutionary Comp. 17(2), 135–166 (2009)
Saxena, D.K., Deb, K.: Dimensionality reduction of objectives and constraints in multi-objective optimization problems: A system design perspective. In: IEEE Congress on Evolutionary Computation, pp. 3204–3211 (2008)
Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms. IEEE Transactions on Evolutionary Computation 17(1), 77–99 (2013)
Chaudhuri, S., Deb, K.: Applied Soft Computing
Sinha, A., Saxena, D.K., Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle many-objective optimization problems. Applied Soft Computing 13(1), 415–427 (2013)
Gutierrez, A.L., Lanza, M., Barriuso, I., Valle, L., Domingo, M., Perez, J.R., Basterrechea, J.: Comparison of different PSO initialization techniques for high dimensional search space problems: A test with FSS and antenna arrays (2011)
Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)
Sierra, M.R., Coello Coello, C.A.: Improving pso-based multi-objective optimization using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)
Hadka, D., Reed, P., Simpson, T.: Diagnostic assessment of the borg MOEA for many-objective product family design problems. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–10 (2012)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization, pp. 1–27 (2001)
Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary computation and convergence to a pareto front, Stanford University, pp. 221–228. Morgan Kaufmann (1998)
Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, MIT (May 1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Freire, H., de Moura Oliveira, P.B., Solteiro Pires, E.J., Bessa, M. (2014). Corner Based Many-Objective Optimization. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-01692-4_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01691-7
Online ISBN: 978-3-319-01692-4
eBook Packages: EngineeringEngineering (R0)