iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-01692-4_10
Corner Based Many-Objective Optimization | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 512))

Abstract

The performance of multi-objective evolutionary algorithms (MOEA) is severely deteriorated when applied to many-objective problems. For Pareto dominance based techniques, available information about optimal solutions can be used to improve their performance. This is the case of corner solutions. This work considers the behaviour of three multi-objective algorithms (NSGA-II, SMPSO and GDE3) when corner solutions are inserted into the population at different evolutionary stages. Corner solutions are found using specific algorithms. Preliminary results are presented concerning the behaviour of the aforementioned algorithms in five benchmark problems (DTLZ1-5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  2. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-Objective Optimization: An Engineering Design Perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: 2008 IEEE Congress on Evolutionary Computation IEEE World Congress on Computational Intelligence, pp. 2419–2426 (March 2008)

    Google Scholar 

  4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Nebro, A., Durillo, J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Miulti-criteria Decision-making, MCDM 2009, pp. 66–73 (2009)

    Google Scholar 

  6. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450 (2005)

    Google Scholar 

  7. Adra, S., Fleming, P.: Diversity management in evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation 15(2), 183–195 (2011)

    Article  Google Scholar 

  8. Deb, K., Jain, H.: Handling many-objective problems using an improved NSGA-II procedure. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)

    Google Scholar 

  9. Dasgupta, D., Hernandez, G., Romero, A., Garrett, D., Kaushal, A., Simien, J.: On the use of informed initialization and extreme solutions sub-population in multi-objective evolutionary algorithms. In: IEEE symposium on Computational Intelligence in Miulti-criteria Decision-making, MCDM 2009, pp. 58–65 (2009)

    Google Scholar 

  10. Singh, H.K., Isaacs, A., Ray, T.: A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evolutionary Computation 15(4), 539–556 (2011)

    Article  Google Scholar 

  11. Bechikh, S., Said, L.B., Ghédira, K.: Searching for knee regions in multi-objective optimization using mobile reference points. In: SAC, pp. 1118–1125 (2010)

    Google Scholar 

  12. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Deb, K., Miettinen, K.: Nadir point estimation using evolutionary approaches: Better accuracy and computational speed through focused search. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Walllenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. LNEMS, vol. 634, pp. 339–354. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Bechikh, S., Ben Said, L., Ghedira, K.: Estimating nadir point in multi-objective optimization using mobile reference points. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–9 (2010)

    Google Scholar 

  15. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization (2008)

    Google Scholar 

  16. Corne, D., Knowles, J.: Techniques for Highly Multiobjective Optimisation: Some Nondominated Points are Better than Others, pp. 773–780 (2007)

    Google Scholar 

  17. Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualisation and ordering of many-objective populations (2010)

    Google Scholar 

  18. Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Garza-Fabre, M., Toscano-Pulido, G., Coello Coello, C.A., Rodriguez-Tello, E.: Effective ranking speciation Many-objective optimization (2011)

    Google Scholar 

  20. L’opez, A., Coello Coello, C.A., Oyama, A., Fujii, K.: An alternative preference relation to deal with many-objective optimization problems. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 291–306. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Jaimes, A.L., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: GECCO, pp. 673–680 (2008)

    Google Scholar 

  22. Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: Theory and applications. Evolutionary Comp. 17(2), 135–166 (2009)

    Article  Google Scholar 

  23. Saxena, D.K., Deb, K.: Dimensionality reduction of objectives and constraints in multi-objective optimization problems: A system design perspective. In: IEEE Congress on Evolutionary Computation, pp. 3204–3211 (2008)

    Google Scholar 

  24. Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms. IEEE Transactions on Evolutionary Computation 17(1), 77–99 (2013)

    Article  Google Scholar 

  25. Chaudhuri, S., Deb, K.: Applied Soft Computing

    Google Scholar 

  26. Sinha, A., Saxena, D.K., Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle many-objective optimization problems. Applied Soft Computing 13(1), 415–427 (2013)

    Article  Google Scholar 

  27. Gutierrez, A.L., Lanza, M., Barriuso, I., Valle, L., Domingo, M., Perez, J.R., Basterrechea, J.: Comparison of different PSO initialization techniques for high dimensional search space problems: A test with FSS and antenna arrays (2011)

    Google Scholar 

  28. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)

    Article  Google Scholar 

  29. Sierra, M.R., Coello Coello, C.A.: Improving pso-based multi-objective optimization using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Hadka, D., Reed, P., Simpson, T.: Diagnostic assessment of the borg MOEA for many-objective product family design problems. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–10 (2012)

    Google Scholar 

  31. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization, pp. 1–27 (2001)

    Google Scholar 

  32. Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary computation and convergence to a pareto front, Stanford University, pp. 221–228. Morgan Kaufmann (1998)

    Google Scholar 

  33. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, MIT (May 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freire, H., de Moura Oliveira, P.B., Solteiro Pires, E.J., Bessa, M. (2014). Corner Based Many-Objective Optimization. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01692-4_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01691-7

  • Online ISBN: 978-3-319-01692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics