iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-0346-0422-2_6
Classification of Infinite-Dimensional Simple Groups of Supersymmetries and Quantum Field Theory | SpringerLink
Skip to main content

Classification of Infinite-Dimensional Simple Groups of Supersymmetries and Quantum Field Theory

  • Chapter
Visions in Mathematics

Part of the book series: Modern Birkhäuser Classics ((MBC))

Abstract

This work was motivated by two seemingly unrelated problems:

  1. 1.

    Lie’s problem of classification of “local continuous transformation groups of a finite-dimensional manifold”.

  2. 2.

    The problem of classification of operator product expansions (OPE) of chiral fields in 2-dimensional conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Alexseevski, D. Leites, I. Shchepochkina, Examples of simple Lie superalgebras of vector fields, C.R. Acad. Bul. Sci. 33 (1980), 1187–1190.

    Google Scholar 

  2. A.A. Belavin, A.M. Polyakov, A.M. Zamolodchikov, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34 (1984), 763–774.

    Article  MathSciNet  Google Scholar 

  3. R.J. Blattner, Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc. 144 (1969), 457–474.

    Article  MathSciNet  Google Scholar 

  4. R.J. Blattner, A theorem of Cartan and Guillemin, J. Diff. Geom. 5 (1970), 295–305.

    MathSciNet  Google Scholar 

  5. A. Cappelli, C.A. Trugenberger, G.R. Zemba, Stable hierarchal quantum Hall fluids as Wi+∞ minimal models, Nucl. Phys. B 448 (1995), 470–511.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Cartan, Les groupes des transformations continués, infinis, simples, Ann. Sci. Ecole Norm. Sup. 26 (1909), 93–161.

    MathSciNet  Google Scholar 

  7. S.-J. Cheng, Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras, J. Algebra 173 (1995), 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.-J. Cheng, V.G. Kac, A new N = 6 superconformal algebra, Commun. Math. Phys. 186 (1997), 219–231.

    Article  MATH  MathSciNet  Google Scholar 

  9. S.-J. Cheng, V.G. Kac, Generalized Spencer cohomology and filtered deformations of ℤ-graded Lie superalgebras, Adv. Theor. Math. Phys. 2 (1998), 1141–1182.

    Article  MATH  MathSciNet  Google Scholar 

  10. S.-J. Cheng, V.G. Kac, Structure of some ℤ-graded Lie superalgebras of vector fields, Transformation Groups 4 (1999), 219–272.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. D’Andrea, V.G. Kac, Structure theory of finite conformal algebras, Selecta Mathematica 4 (1998), 377–418.

    Article  MATH  MathSciNet  Google Scholar 

  12. E.S. Fradkin, V. Ya. Linetsky, Classification of superconformal and quasisuperconformal algebras in two dimensions, Phys. Lett. B 291 (1992), 71–76.

    Article  MATH  MathSciNet  Google Scholar 

  13. V.W. Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Diff. Geom. 2 (1968), 313–345.

    MATH  MathSciNet  Google Scholar 

  14. V.W. Guillemin, Infinite-dimensional primitive Lie algebras, J. Diff. Geom. 4 (1970), 257–282.

    MATH  MathSciNet  Google Scholar 

  15. V.W. Guillemin, S. Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16–47.

    Article  MATH  MathSciNet  Google Scholar 

  16. V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izvestija 2 (1968), 1271–1311.

    Article  MATH  Google Scholar 

  17. V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8–96.

    Article  MATH  Google Scholar 

  18. V.G. Kac, Modular invariance in mathematics and physics, in “Mathematics into the 21st Century”, AMS Centennial Publ. (1992), 337–350.

    Google Scholar 

  19. V.G. Kac, Vertex Algebras for Beginners, University Lecture Series 10, AMS, Providence, RI, 1996. Second edition 1998.

    Google Scholar 

  20. V.G. Kac, The idea of locality, in “Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras” (H.D. Doebner, et al., eds.), World Sci., Singapore (1997), 16–22.

    Google Scholar 

  21. V.G. Kac, Superconformal algebras and transitive group actions on quadrics, Comm. Math. Phys. 186 (1997), 233–252.

    Article  MATH  MathSciNet  Google Scholar 

  22. V.G. Kac, Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. 139 (1998), 1–55.

    Article  MATH  MathSciNet  Google Scholar 

  23. V.G. Kac, J. van der Leur, On classification of superconformal algebras, in “Strings 88” (S.J. Gates, et al., eds.), World Sci. (1989), 77–106.

    Google Scholar 

  24. V.G. Kac, A.O. Radul, Representation theory of W1+∞, Transformation Groups 1 (1996), 41–70.

    Article  MATH  MathSciNet  Google Scholar 

  25. V.G. Kac, A.N. Rudakov, Irreducible representations of linearly compact Lie superalgebras, in preparation.

    Google Scholar 

  26. Yu. Kochetkoff, Déformations de superalgébres de Buttin et quantification, CR. Acad. Sci. Paris 299, ser I, 14 (1984), 643–645.

    Google Scholar 

  27. S. Lie, Theorie der transformations Gruppen, Math. Ann. 16 (1880), 441–528.

    Article  MathSciNet  Google Scholar 

  28. O. Mathieu, Classification of simple graded Lie algebras of finite growth, Invent. Math. 108 (1992), 445–519.

    Article  MathSciNet  Google Scholar 

  29. V.I. Ogievetskii, E.S. Sokachev, The simplest group of Einstein supergravity, Sov. J. Nucl. Phys. 31 (1980), 140–164.

    Google Scholar 

  30. L. Okun, Physics of Elementary Particles, Nauka, 1988 (in Russian).

    Google Scholar 

  31. E. Poletaeva, Semi-infinite cohomology and superconformal algebras, preprint.

    Google Scholar 

  32. P. Ramond, J.H. Schwarz, Classification of dual model gauge algebras, Phys. Lett. B. 64 (1976), 75–77.

    Article  MathSciNet  Google Scholar 

  33. A.N. Rudakov, Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Math. USSR-Izvestija 8 (1974), 836–866.

    Article  MATH  Google Scholar 

  34. J.A. Schouten, W. van der Kulk, Pfaff’s Problem and its Generalizations, Clarendon Press, 1949.

    Google Scholar 

  35. I. Shchepochkina, New exceptional simple Lie superalgebras, C.R. Bui. Sci. 36:3 (1983), 313–314.

    MATH  MathSciNet  Google Scholar 

  36. I. Shchepochkina, The five exceptional simple Lie superalgebras of vector fields, preprint.

    Google Scholar 

  37. I.M. Singer, S. Sternberg, On the infinite groups of Lie and Cartan I, J. Analyse Math. 15 (1965), 1–114.

    Article  MATH  MathSciNet  Google Scholar 

  38. S. Sternberg, Featured review of “Classification of infinite-dimensional simple linearly compact Lie superalgebras” by Victor Kac, Math. Reviews 99m: 17006, 1999.

    Google Scholar 

  39. B.Y. Weisfeiler, Infinite-dimensional filtered Lie algebras and their connection with graded Lie algebras, Funct. Anal. Appl. 2 (1968), 88–89.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser, Springer Basel AG

About this chapter

Cite this chapter

Kac, V.G. (2010). Classification of Infinite-Dimensional Simple Groups of Supersymmetries and Quantum Field Theory. In: Alon, N., Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in Mathematics. Modern Birkhäuser Classics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0422-2_6

Download citation

Publish with us

Policies and ethics