Abstract
Genetic Algorithms (GAs) are powerful optimization techniques inspired by the principles of natural selection and genetics. One critical aspect of their success lies in the diversity of solutions within their populations. Diversity ensures exploration of a broader solution space, preventing premature convergence to sub-optimal solutions. Consequently, the evaluation and maintenance of diversity metrics in GA populations have garnered significant attention in the field of evolutionary computation. This article presents the efficiency of diploid genetic algorithms against the haploid variant through measures of population diversity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Al-Rahman, D.I.A., Attea, B.A.: Solving multiple-container packing problems using pseudo-meiosis genetic algorithm. J. Eng. 11(3), 455–466 (2005)
Attea, B.A.: The effect of pseudo-meiosis genetic algorithm on bit-coding stationary genetic search. Iraqi J. Sci. 47(1), 160–165 (2006)
Burks, A.R., Punch, W.F.: An efficient structural diversity technique for genetic programming. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 991–998 (2015)
Cheng, C., Lee, W., Miltenburg, J.: A bi-chromosome genetic algorithm for minimizing intercell and intracell moves. Group Technology and Cellular Manufacturing: A State-of-the-Art Synthesis of Research and Practice, pp. 205–219 (1998)
Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. Technical Report, Naval Research Lab Washington DC (1993)
Collingwood, E., Corne, D., Ross, P.: Useful diversity via multiploidy. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 810–813. IEEE (1996)
Cruz-Chávez, M.A., Martínez-Oropeza, A., et al.: Feasible initial population with genetic diversity for a population-based algorithm applied to the vehicle routing problem with time windows. Math. Probl. Eng. 2016, 3851520 (2016)
Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for life. Murray, London (1859)
De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. University of Michigan (1975)
Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 42–50 (1989)
Dieterich, J.M., Hartke, B.: Empirical review of standard benchmark functions using evolutionary global optimization. arXiv preprint arXiv:1207.4318 (2012)
Dulebenets, M.A.: A diploid evolutionary algorithm for sustainable truck scheduling at a cross-docking facility. Sustainability 10(5), 1333 (2018)
Dulebenets, M.A.: An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 565, 390–421 (2021)
Galán, S.F., Mengshoel, O.J., Pinter, R.: A novel mating approach for genetic algorithms. Evol. Comput. 21(2), 197–229 (2013)
Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proceedings of Second International Conference on Genetic Algorithms and their Application, pp. 59–68 (1987)
of Health, N.I., et al.: Talking glossary of genetic terms. national human genome research institute web site (2017)
Herrera-Poyatos, A., Herrera, F.: Genetic and memetic algorithm with diversity equilibrium based on greedy diversification. arXiv preprint arXiv:1702.03594 (2017)
Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1–3), 228–234 (1990)
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)
Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008 (2013)
John, B.: Meiosis, vol. 22. Cambridge University Press, Cambridge (2005)
Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2016)
Lin, S.K.: Gibbs paradox and the concepts of information, symmetry, similarity and their relationship. Entropy 10(1), 1–5 (2008)
Long, Q., Wu, C., Wang, X., Jiang, L., Li, J., et al.: A multiobjective genetic algorithm based on a discrete selection procedure. Math. Prob. Eng. 2015, 349781 (2015)
Matei, O.: Evolutionary computation: principles and practices. Risoprint (2008)
Matei, O., Pop, P.C., Sas, J.L., Chira, C.: An improved immigration memetic algorithm for solving the heterogeneous fixed fleet vehicle routing problem. Neurocomputing 150, 58–66 (2015)
Michael, R., Vida, K., Shuvr, S.: A modular genetic algorithm for scheduling task graphs. United States (2003)
Michalewicz, Z.: Genetic algorithms+ data structures= evolution programs. Springer Science & Business Media (2013)
Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995). http://dl.acm.org/citation.cfm?id=645514.657904
Pencheva, T., Atanassov, K., Shannon, A.: Modelling of a roulette wheel selection operator in genetic algorithms using generalized nets. Int. J. Bioautomation 13(4), 257 (2009)
Petrovan, A., Matei, O., Erdei, R.: A Behavioural Study of the Crossover Operator in Diploid Genetic Algorithms. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020), SOCO 2020, Advances in Intelligent Systems and Computing, vol. 1268, pp 79–88. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_8
Petrovan, A., Pop-Sitar, P., Matei, O.: Haploid versus diploid genetic algorithms. a comparative study. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 193–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_17
Pop, P., Matei, O., Pintea, C.: A two-level diploid genetic based algorithm for solving the family traveling salesman problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 340–346. ACM (2018)
Pop, P., Oliviu, M., Sabo, C.: A Hybrid diploid genetic based algorithm for solving the generalized traveling salesman problem. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 149–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_13
Pop, P.C., Matei, O., Sabo, C., Petrovan, A.: A two-level solution approach for solving the generalized minimum spanning tree problem. Eur. J. Oper. Res. 265(2), 478–487 (2018)
Rieger, R., Michaelis, A., Green, M.M.: Glossary of Genetics: Classical and Molecular. Springer Science & Business Media (2012)
Rui, L., Qin, Y., Li, B., Gao, Z.: Context-based intelligent scheduling and knowledge push algorithms for AR-assist communication network maintenance. Comput. Model. Eng. Sci. 118(2), 291–315 (2019)
Schlierkamp-Voosen, D., Mühlenbein, H.: Strategy adaptation by competing subpopulations. In: Davidor, Y., Schwefel, HP., Männer, R. (eds.) Parallel Problem Solving from Nature - PPSN III, PPSN 1994, LNCS, vol. 866. Springer, Berlin, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_264
Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Inc, Hoboken (1981)
Thorgaard, G.H.: Ploidy manipulation and performance. Aquaculture 57(1–4), 57–64 (1986)
Witten, E.: A mini-introduction to information theory. La Rivista del Nuovo Cimento 43(4), 187–227 (2020)
Wong, Y.Y., Lee, K.H., Leung, K.S., Ho, C.W.: A novel approach in parameter adaptation and diversity maintenance for genetic algorithms. Soft. Comput. 7, 506–515 (2003)
Wu, X., Chu, C.H., Wang, Y., Yan, W.: Concurrent design of cellular manufacturing systems: a genetic algorithm approach. Int. J. Prod. Res. 44(6), 1217–1241 (2006)
Younes, A., Basir, O., Calamai, P.: A hybrid evolutionary approach for combinatorial problems in dynamic environments. In: 2006 Canadian Conference on Electrical and Computer Engineering, pp. 1595–1600. IEEE (2006)
Yu, Z., Ni, M., Wang, Z., Zhang, Y., et al.: Dynamic route guidance using improved genetic algorithms. Math. Probl. Eng. 2013, 765135 (2013)
Yukiko, Y., Nobue, A.: A diploid genetic algorithm for preserving population diversity - Pseudo-Meiosis GA. In: Davidor, Y., Schwefel, HP., Männer, R. (eds.) Parallel Problem Solving from Nature - PPSN III, PPSN 1994, LNCS, vol. 866, pp 36–45. Springer, Berlin (1994). https://doi.org/10.1007/3-540-58484-6_248
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Petrovan, A., Matei, O., Pop, P.C., Sabo, C. (2025). Diversity Population Metrics in Diploid and Haploid Genetic Algorithm Variants. In: Quintián, H., et al. Hybrid Artificial Intelligent Systems. HAIS 2024. Lecture Notes in Computer Science(), vol 14857. Springer, Cham. https://doi.org/10.1007/978-3-031-74183-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-74183-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74182-1
Online ISBN: 978-3-031-74183-8
eBook Packages: Computer ScienceComputer Science (R0)