Abstract
Neural rendering techniques have significantly advanced 3D human body modeling. However, previous approaches overlook dynamics induced by factors such as motion inertia, leading to challenges in scenarios where the pose remains static while the appearance changes, such as abrupt stops after spinning. This limitation arises from conditioning on a single pose, which leads to ambiguity in mapping one pose to multiple appearances.
In this study, we elucidate that variations in human appearance depend not only on the current frame’s pose condition but also on past pose states. We introduce Dyco, a novel method that utilizes the delta pose sequence to effectively model temporal appearance variations. To mitigate overfitting to the delta pose sequence, we further propose a localized dynamic context encoder to reduce unnecessary inter-body part dependencies. To validate the effectiveness of our approach, we collect a novel dataset named I3D-Human, focused on capturing temporal changes in clothing appearance under similar poses. Dyco significantly outperforms baselines on I3D-Human and achieves comparable results on ZJU-MoCap. Furthermore, our inertia-aware 3D human method can unprecedentedly simulate appearance changes caused by inertia at different velocities. The code, data and model are available at our project website at https://ai4sports.opengvlab.com/Dyco.
Y. Chen and Y. Zhan—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Easymocap - make human motion capture easier. Github (2021). https://github.com/zju3dv/EasyMocap
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 851–866 (2023)
Alldieck, T., Magnor, M.A., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3D people models. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 8387–8397. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00875. http://openaccess.thecvf.com/content_cvpr_2018/html/Alldieck_Video_Based_Reconstruction_CVPR_2018_paper.html
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)
Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 16102–16112. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01565
Cheng, W., et al.: DNA-rendering: a diverse neural actor repository for high-fidelity human-centric rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19982–19993 (2023)
Dong, J., Fang, Q., Jiang, W., Yang, Y., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation and tracking from multiple views. In: T-PAMI (2021)
Freifeld, O., Black, M.J.: Lie bodies: a manifold representation of 3D human shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_1
Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person. ACM Trans. Graph. (ToG) 31(4), 1–10 (2012)
Hirshberg, D.A., Loper, M., Rachlin, E., Black, M.J.: Coregistration: simultaneous alignment and modeling of articulated 3D shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 242–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_18
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248
Jiang, T., Chen, X., Song, J., Hilliges, O.: Instantavatar: learning avatars from monocular video in 60 seconds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16922–16932 (2023)
Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139:1–139:14 (2023). https://doi.org/10.1145/3592433
Larboulette, C., Cani, M.P., Arnaldi, B.: Dynamic skinning: adding real-time dynamic effects to an existing character animation. In: Proceedings of the 21st Spring Conference on Computer Graphics, SCCG 2005, pp. 87–93. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1090122.1090138
Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 811–818 (2023)
Li, R., et al.: TAVA: template-free animatable volumetric actors (2022)
Lin, H., et al.: Efficient neural radiance fields for interactive free-viewpoint video. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)
Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. 40(6) (2021). https://doi.org/10.1145/3478513.3480528
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5762–5772 (2021)
Patel, C., Liao, Z., Pons-Moll, G.: Tailornet: predicting clothing in 3D as a function of human pose, shape and garment style. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)
Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV (2021)
Peng, S., et al.: Implicit neural representations with structured latent codes for human body modeling. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9895–9907 (2023)
Peng, S., et al.: Animatable implicit neural representations for creating realistic avatars from videos. TPAMI (2024)
Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 9054–9063. Computer Vision Foundation/IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.00894. https://openaccess.thecvf.com/content/CVPR2021/html/Peng_Neural_Body_Implicit_Neural_Representations_With_Structured_Latent_Codes_for_CVPR_2021_paper.html
Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: CVPR (2021)
Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. 34(4), 120:1–120:14 (2015). https://doi.org/10.1145/2766993
Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3DGS-avatar: animatable avatars via deformable 3D gaussian splatting (2024)
Rohmer, D., Tarini, M., Kalyanasundaram, N., Moshfeghifar, F., Cani, M.P., Zordan, V.B.: Velocity skinning for real-time stylized skeletal animation. Comput. Graph. Forum 40 (2021). https://api.semanticscholar.org/CorpusID:233210320
Shuai, Q., et al.: Novel view synthesis of human interactions from sparse multi-view videos. In: SIGGRAPH Conference Proceedings (2022)
Su, S., Yu, F., Zollhöfer, M., Rhodin, H.: A-nerf: articulated neural radiance fields for learning human shape, appearance, and pose. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, virtual, pp. 12278–12291 (2021). https://proceedings.neurips.cc/paper/2021/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)
Wang, S., Schwarz, K., Geiger, A., Tang, S.: ARAH: animatable volume rendering of articulated human SDFs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 1–19. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_1
Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: HumanNeRF: free-viewpoint rendering of moving people from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16210–16220 (2022)
Wu, M., Wang, Y., Hu, Q., Yu, J.: Multi-view neural human rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691 (2020)
Yu, Z., Cheng, W., Liu, X., Wu, W., Lin, K.Y.: Monohuman: animatable human neural field from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16943–16953 (2023)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zheng, Z., Zhao, X., Zhang, H., Liu, B., Liu, Y.: Avatarrex: real-time expressive full-body avatars. ACM Trans. Graph. 42(4) (2023). https://doi.org/10.1145/3592101
Acknowledgements
This work is supported by the Shanghai Artificial intelligence Laboratory, in part by JSPS KAKENHI Grant Numbers 24K22318, 22H00529, 20H05951, JST-Mirai Program JPMJMI23G1.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y. et al. (2025). Within the Dynamic Context: Inertia-Aware 3D Human Modeling with Pose Sequence. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-72967-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72966-9
Online ISBN: 978-3-031-72967-6
eBook Packages: Computer ScienceComputer Science (R0)