iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-72967-6_27
Within the Dynamic Context: Inertia-Aware 3D Human Modeling with Pose Sequence | SpringerLink
Skip to main content

Within the Dynamic Context: Inertia-Aware 3D Human Modeling with Pose Sequence

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15107))

Included in the following conference series:

  • 45 Accesses

Abstract

Neural rendering techniques have significantly advanced 3D human body modeling. However, previous approaches overlook dynamics induced by factors such as motion inertia, leading to challenges in scenarios where the pose remains static while the appearance changes, such as abrupt stops after spinning. This limitation arises from conditioning on a single pose, which leads to ambiguity in mapping one pose to multiple appearances.

In this study, we elucidate that variations in human appearance depend not only on the current frame’s pose condition but also on past pose states. We introduce Dyco, a novel method that utilizes the delta pose sequence to effectively model temporal appearance variations. To mitigate overfitting to the delta pose sequence, we further propose a localized dynamic context encoder to reduce unnecessary inter-body part dependencies. To validate the effectiveness of our approach, we collect a novel dataset named I3D-Human, focused on capturing temporal changes in clothing appearance under similar poses. Dyco significantly outperforms baselines on I3D-Human and achieves comparable results on ZJU-MoCap. Furthermore, our inertia-aware 3D human method can unprecedentedly simulate appearance changes caused by inertia at different velocities. The code, data and model are available at our project website at https://ai4sports.opengvlab.com/Dyco.

Y. Chen and Y. Zhan—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Easymocap - make human motion capture easier. Github (2021). https://github.com/zju3dv/EasyMocap

  2. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 851–866 (2023)

    Google Scholar 

  3. Alldieck, T., Magnor, M.A., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3D people models. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 8387–8397. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00875. http://openaccess.thecvf.com/content_cvpr_2018/html/Alldieck_Video_Based_Reconstruction_CVPR_2018_paper.html

  4. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)

    Google Scholar 

  5. Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 16102–16112. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01565

  6. Cheng, W., et al.: DNA-rendering: a diverse neural actor repository for high-fidelity human-centric rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19982–19993 (2023)

    Google Scholar 

  7. Dong, J., Fang, Q., Jiang, W., Yang, Y., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation and tracking from multiple views. In: T-PAMI (2021)

    Google Scholar 

  8. Freifeld, O., Black, M.J.: Lie bodies: a manifold representation of 3D human shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_1

    Chapter  Google Scholar 

  9. Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person. ACM Trans. Graph. (ToG) 31(4), 1–10 (2012)

    Article  Google Scholar 

  10. Hirshberg, D.A., Loper, M., Rachlin, E., Black, M.J.: Coregistration: simultaneous alignment and modeling of articulated 3D shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 242–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_18

    Chapter  Google Scholar 

  11. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248

  12. Jiang, T., Chen, X., Song, J., Hilliges, O.: Instantavatar: learning avatars from monocular video in 60 seconds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16922–16932 (2023)

    Google Scholar 

  13. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)

    Article  Google Scholar 

  14. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  15. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139:1–139:14 (2023). https://doi.org/10.1145/3592433

  16. Larboulette, C., Cani, M.P., Arnaldi, B.: Dynamic skinning: adding real-time dynamic effects to an existing character animation. In: Proceedings of the 21st Spring Conference on Computer Graphics, SCCG 2005, pp. 87–93. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1090122.1090138

  17. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 811–818 (2023)

    Google Scholar 

  18. Li, R., et al.: TAVA: template-free animatable volumetric actors (2022)

    Google Scholar 

  19. Lin, H., et al.: Efficient neural radiance fields for interactive free-viewpoint video. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)

    Google Scholar 

  20. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. 40(6) (2021). https://doi.org/10.1145/3478513.3480528

  21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  22. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  23. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5762–5772 (2021)

    Google Scholar 

  24. Patel, C., Liao, Z., Pons-Moll, G.: Tailornet: predicting clothing in 3D as a function of human pose, shape and garment style. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)

    Google Scholar 

  25. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV (2021)

    Google Scholar 

  26. Peng, S., et al.: Implicit neural representations with structured latent codes for human body modeling. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9895–9907 (2023)

    Article  Google Scholar 

  27. Peng, S., et al.: Animatable implicit neural representations for creating realistic avatars from videos. TPAMI (2024)

    Google Scholar 

  28. Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 9054–9063. Computer Vision Foundation/IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.00894. https://openaccess.thecvf.com/content/CVPR2021/html/Peng_Neural_Body_Implicit_Neural_Representations_With_Structured_Latent_Codes_for_CVPR_2021_paper.html

  29. Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: CVPR (2021)

    Google Scholar 

  30. Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. 34(4), 120:1–120:14 (2015). https://doi.org/10.1145/2766993

  31. Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3DGS-avatar: animatable avatars via deformable 3D gaussian splatting (2024)

    Google Scholar 

  32. Rohmer, D., Tarini, M., Kalyanasundaram, N., Moshfeghifar, F., Cani, M.P., Zordan, V.B.: Velocity skinning for real-time stylized skeletal animation. Comput. Graph. Forum 40 (2021). https://api.semanticscholar.org/CorpusID:233210320

  33. Shuai, Q., et al.: Novel view synthesis of human interactions from sparse multi-view videos. In: SIGGRAPH Conference Proceedings (2022)

    Google Scholar 

  34. Su, S., Yu, F., Zollhöfer, M., Rhodin, H.: A-nerf: articulated neural radiance fields for learning human shape, appearance, and pose. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, virtual, pp. 12278–12291 (2021). https://proceedings.neurips.cc/paper/2021/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html

  35. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  36. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)

  37. Wang, S., Schwarz, K., Geiger, A., Tang, S.: ARAH: animatable volume rendering of articulated human SDFs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 1–19. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_1

    Chapter  Google Scholar 

  38. Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: HumanNeRF: free-viewpoint rendering of moving people from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16210–16220 (2022)

    Google Scholar 

  39. Wu, M., Wang, Y., Hu, Q., Yu, J.: Multi-view neural human rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691 (2020)

    Google Scholar 

  40. Yu, Z., Cheng, W., Liu, X., Wu, W., Lin, K.Y.: Monohuman: animatable human neural field from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16943–16953 (2023)

    Google Scholar 

  41. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  42. Zheng, Z., Zhao, X., Zhang, H., Liu, B., Liu, Y.: Avatarrex: real-time expressive full-body avatars. ACM Trans. Graph. 42(4) (2023). https://doi.org/10.1145/3592101

Download references

Acknowledgements

This work is supported by the Shanghai Artificial intelligence Laboratory, in part by JSPS KAKENHI Grant Numbers 24K22318, 22H00529, 20H05951, JST-Mirai Program JPMJMI23G1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihang Zhong or Xiao Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8120 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2025). Within the Dynamic Context: Inertia-Aware 3D Human Modeling with Pose Sequence. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72967-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72966-9

  • Online ISBN: 978-3-031-72967-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics