Abstract
Large, pretrained latent diffusion models (LDMs) have demonstrated an extraordinary ability to generate creative content, specialize to user data through few-shot fine-tuning, and condition their output on other modalities, such as semantic maps. However, are they usable as large-scale data generators, e.g., to improve tasks in the perception stack, like semantic segmentation? We investigate this question in the context of autonomous driving, and answer it with a resounding “yes”. We propose an efficient data generation pipeline termed DGInStyle. First, we examine the problem of specializing a pretrained LDM to semantically-controlled generation within a narrow domain. Second, we propose a Style Swap technique to endow the rich generative prior with the learned semantic control. Third, we design a Multi-resolution Latent Fusion technique to overcome the bias of LDMs towards dominant objects. Using DGInStyle, we generate a diverse dataset of street scenes, train a domain-agnostic semantic segmentation model on it, and evaluate the model on multiple popular autonomous driving datasets. Our approach consistently increases the performance of several domain generalization methods compared to the previous state-of-the-art methods. The source code and the generated dataset are available at dginstyle.github.io.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Azizi, S., Kornblith, S., Saharia, C., Norouzi, M., Fleet, D.J.: Synthetic data from diffusion models improves ImageNet classification. arXiv:2304.08466 (2023)
Bansal, A., et al.: Universal guidance for diffusion models. arXiv:2302.07121 (2023)
Bar-Tal, O., Yariv, L., Lipman, Y., Dekel, T.: MultiDiffusion: fusing diffusion paths for controlled image generation. arXiv:2302.08113 (2023)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv:1809.11096 (2019)
Cai, S., et al.: DiffDreamer: towards consistent unsupervised single-view scene extrapolation with conditional diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)
Cai, S., Obukhov, A., Dai, D., Van Gool, L.: Pix2NeRF: unsupervised conditional P-GAN for single image to neural radiance fields translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Chen, K., et al.: GeoDiffusion: Text-prompted geometric control for object detection data generation. arXiv:2306.04607 (2023)
Chen, M., Laina, I., Vedaldi, A.: Training-free layout control with cross-attention guidance. arXiv:2304.03373 (2023)
Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: RobustNet: improving domain generalization in urban-scene segmentation via instance selective whitening. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. arXiv:2105.05233 (2021)
Ding, J., Xue, N., Xia, G.S., Schiele, B., Dai, D.: HGFormer: hierarchical grouping transformer for domain generalized semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
Dunlap, L., Umino, A., Zhang, H., Yang, J., Gonzalez, J.E., Darrell, T.: Diversify your vision datasets with automatic diffusion-based augmentation. arXiv:2305.16289 (2023)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning (2015)
Goel, V., et al.: PAIR-diffusion: object-level image editing with structure-and-appearance paired diffusion models. arXiv:2303.17546 (2023)
Gong, R., Danelljan, M., Sun, H., Mangas, J.D., Gool, L.V.: Prompting diffusion representations for cross-domain semantic segmentation. arXiv:2307.02138 (2023)
Goodfellow, I.J., et al.: Generative adversarial networks. arXiv:1406.2661 (2014)
Ham, C., Hays, J., Lu, J., Singh, K.K., Zhang, Z., Hinz, T.: Modulating pretrained diffusion models for multimodal image synthesis. arXiv:2302.12764 (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
He, R., et al.: Is synthetic data from generative models ready for image recognition? arXiv:2210.07574 (2023)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems (2020)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv:2207.12598 (2022)
Hoyer, L., Dai, D., Van Gool, L.: DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Hoyer, L., Dai, D., Van Gool, L.: HRDA: context-aware high-resolution domain-adaptive semantic segmentation. arXiv:2204.13132 (2022)
Hoyer, L., Dai, D., Van Gool, L.: Domain adaptive and generalizable network architectures and training strategies for semantic image segmentation. IEEE TPAMI 46(1), 220–235 (2024)
Huang, J., Guan, D., Xiao, A., Lu, S.: FSDR: frequency space domain randomization for domain generalization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Huang, L., Chen, D., Liu, Y., Shen, Y., Zhao, D., Zhou, J.: Composer: creative and controllable image synthesis with composable conditions. arXiv:2302.09778 (2023)
Huang, W., et al.: Style projected clustering for domain generalized semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Repurposing diffusion-based image generators for monocular depth estimation (2023)
Kim, S., Kim, D.H., Kim, H.: Texture learning domain randomization for domain generalized segmentation. arXiv preprint arXiv:2303.11546 (2023)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2022)
Kondapaneni, N., Marks, M., Knott, M., Guimarães, R., Perona, P.: Text-image alignment for diffusion-based perception. arXiv:2310.00031 (2023)
Li, Z., Li, Y., Zhao, P., Song, R., Li, X., Yang, J.: Is synthetic data from diffusion models ready for knowledge distillation? arXiv:2305.12954 (2023)
Li, Z., Zhou, Q., Zhang, X., Zhang, Y., Wang, Y., Xie, W.: Guiding text-to-image diffusion model towards grounded generation. arXiv preprint arXiv:2301.05221 (2023)
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: RePaint: inpainting using denoising diffusion probabilistic models. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Meng, C., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: SDEdit: image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021)
Mou, C., et al.: T2I-adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv:2302.08453 (2023)
Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: IEEE International Conference on Computer Vision (2017)
Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-Net. In: European Conference on Computer Vision (2018)
Peng, D., Hu, P., Ke, Q., Liu, J.: Diffusion-based image translation with label guidance for domain adaptive semantic segmentation. In: IEEE/CVF International Conference on Computer Vision (2023)
Peng, D., Lei, Y., Hayat, M., Guo, Y., Li, W.: Semantic-aware domain generalized segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Peng, D., Lei, Y., Liu, L., Zhang, P., Liu, J.: Global and local texture randomization for synthetic-to-real semantic segmentation. IEEE Trans. Image Process. 30 (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv:2103.00020 (2021)
Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv:1505.05770 (2016)
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Roberts, M., et al.: Hypersim: a photorealistic synthetic dataset for holistic indoor scene understanding. In: International Conference on Computer Vision (ICCV) (2021)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 (2015)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. arXiv:2208.12242 (2023)
Saha, S., Hoyer, L., Obukhov, A., Dai, D., Van Gool, L.: EDAPS: enhanced domain-adaptive panoptic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
Sakaridis, C., Dai, D., Van Gool, L.: Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. In: IEEE International Conference on Computer Vision (2019)
Sakaridis, C., Dai, D., Van Gool, L.: ACDC: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: IEEE/CVF International Conference on Computer Vision (2021)
Sariyildiz, M.B., Alahari, K., Larlus, D., Kalantidis, Y.: Fake it till you make it: learning transferable representations from synthetic imagenet clones. arXiv:2212.08420 (2023)
Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. In: Advances in Neural Information Processing Systems (2022)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv:2010.02502 (2022)
Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. arXiv:2011.13456 (2021)
Trabucco, B., Doherty, K., Gurinas, M., Salakhutdinov, R.: Effective data augmentation with diffusion models. arXiv:2302.07944 (2023)
Wang, T., Kanakis, M., Schindler, K., Van Gool, L., Obukhov, A.: Breathing new life into 3D assets with generative repainting. In: British Machine Vision Conference (2023)
Wu, W., et al.: DatasetDM: synthesizing data with perception annotations using diffusion models. arXiv:2308.06160 (2023)
Wu, W., Zhao, Y., Shou, M.Z., Zhou, H., Shen, C.: DiffuMask: synthesizing images with pixel-level annotations for semantic segmentation using diffusion models. arXiv preprint arXiv:2303.11681 (2023)
Wu, Z., et al.: Synthetic data supervised salient object detection. In: ACM International Conference on Multimedia (2022)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems (2021)
Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., Mello, S.D.: Open-vocabulary panoptic segmentation with text-to-image diffusion models. arXiv:2303.04803 (2023)
Xue, H., Huang, Z., Sun, Q., Song, L., Zhang, W.: Freestyle layout-to-image synthesis. arXiv:2303.14412 (2023)
Yang, L., Xu, X., Kang, B., Shi, Y., Zhao, H.: FreeMask: synthetic images with dense annotations make stronger segmentation models. arXiv preprint arXiv:2310.15160 (2023)
Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
Yu, J., Wang, Y., Zhao, C., Ghanem, B., Zhang, J.: FreeDoM: training-free energy-guided conditional diffusion model. arXiv:2303.09833 (2023)
Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., Gong, B.: Domain randomization and pyramid consistency: simulation-to-real generalization without accessing target domain data. In: IEEE/CVF International Conference on Computer Vision (2019)
Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023)
Zhang, M., et al.: DiffusionEngine: diffusion model is scalable data engine for object detection. arXiv:2309.03893 (2023)
Zhang, Y., et al.: DatasetGAN: efficient labeled data factory with minimal human effort. arXiv:2104.06490 (2021)
Zhao, S., et al.: Uni-ControlNet: all-in-one control to text-to-image diffusion models. arXiv:2305.16322 (2023)
Zhao, Y., Zhong, Z., Zhao, N., Sebe, N., Lee, G.H.: Style-hallucinated dual consistency learning for domain generalized semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 535–552. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_31
Zhong, Z., Zhao, Y., Lee, G.H., Sebe, N.: Adversarial style augmentation for domain generalized urban-scene segmentation. In: Advances in Neural Information Processing Systems (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jia, Y. et al. (2025). DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15097. Springer, Cham. https://doi.org/10.1007/978-3-031-72933-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-72933-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72932-4
Online ISBN: 978-3-031-72933-1
eBook Packages: Computer ScienceComputer Science (R0)