iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-72117-5_24
EndoFinder: Online Image Retrieval for Explainable Colorectal Polyp Diagnosis | SpringerLink
Skip to main content

EndoFinder: Online Image Retrieval for Explainable Colorectal Polyp Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Determining the necessity of resecting malignant polyps during colonoscopy screen is crucial for patient outcomes, yet challenging due to the time-consuming and costly nature of histopathology examination. While deep learning-based classification models have shown promise in achieving optical biopsy with endoscopic images, they often suffer from a lack of explainability. To overcome this limitation, we introduce EndoFinder, a content-based image retrieval framework to find the ‘digital twin’ polyp in the reference database given a newly detected polyp. The clinical semantics of the new polyp can be inferred referring to the matched ones. EndoFinder pioneers a polyp-aware image encoder that is pre-trained on a large polyp dataset in a self-supervised way, merging masked image modeling with contrastive learning. This results in a generic embedding space ready for different downstream clinical tasks based on image retrieval. We validate the framework on polyp re-identification and optical biopsy tasks, with extensive experiments demonstrating that EndoFinder not only achieves explainable diagnostics but also matches the performance of supervised classification models. EndoFinder’s reliance on image retrieval has the potential to support diverse downstream decision-making tasks during real-time colonoscopy procedures.

R. Yang and Y. Zhu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022). https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  2. Siegel, R.L., Miller, K.D., Goding Sauer, A., et al.: Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70, 145–164 (2020). https://doi.org/10.3322/caac.21601

    Article  Google Scholar 

  3. Biller, L.H., Schrag, D.: Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA 325, 669–685 (2021). https://doi.org/10.1001/jama.2021.0106

    Article  Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., et al.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  6. Zhang, H., Cisse, M., Dauphin, Y.N., et al.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  7. El-Nouby, A., Neverova, N., Laptev, I., et al.: Training vision transformers for image retrieval. arXiv preprint arXiv:2102.05644 (2021)

  8. Guan, A., Liu, L., Fu, X., et al.: Precision medical image hash retrieval by interpretability and feature fusion. Comput. Methods Programs Biomed. 222, 106945 (2022)

    Article  Google Scholar 

  9. Wang, X., Du, Y., Yang, S., et al.: RetCCL: clustering-guided contrastive learning for whole-slide image retrieval. Med. Image Anal. 83, 102645 (2023)

    Article  Google Scholar 

  10. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  11. He, K., Chen, X., Xie, S., et al.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  12. Pizzi, E., Roy, S.D., Ravindra, S.N., Goyal, P., Douze, M.: A self-supervised descriptor for image copy detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14532–14542 (2022)

    Google Scholar 

  13. Hirsch, R., et al.: Self-supervised learning for endoscopic video analysis. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14224, pp. 569–578. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_55

    Chapter  Google Scholar 

  14. Shen, C., et al.: Forensic histopathological recognition via a context-aware mil network powered by self-supervised contrastive learning. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14225, pp. 528–538. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43987-2_51

    Chapter  Google Scholar 

  15. Grill, J.B., Strub, F., Altché, F., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  16. Caron, M., Misra, I., Mairal, J., et al.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  17. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Wu, Z., Xiong, Y., Yu, S.X., et al.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  19. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  20. Öztürk, Ş: Class-driven content-based medical image retrieval using hash codes of deep features. Biomed. Signal Process. Control 68, 102601 (2021)

    Article  Google Scholar 

  21. Liu, C., Ma, J., Tang, X., et al.: Deep hash learning for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 59(4), 3420–3443 (2020)

    Article  Google Scholar 

  22. Li, T., Zhang, Z., Pei, L., et al.: HashFormer: vision transformer based deep hashing for image retrieval. IEEE Signal Process. Lett. 29, 827–831 (2022)

    Article  Google Scholar 

  23. Chen, Y., Tang, Y., Huang, J., et al.: Multi-scale triplet hashing for medical image retrieval. Comput. Biol. Med. 155, 106633 (2023)

    Article  Google Scholar 

  24. Chandran, S., Parker, F., Lontos, S., et al.: Can we ease the financial burden of colonoscopy? Using real-time endoscopic assessment of polyp histology to predict surveillance intervals. Int. Med. J. 45(12), 1293–1299 (2015)

    Article  Google Scholar 

  25. van den Broek, F.J.C., Reitsma, J.B., Curvers, W.L., et al.: Systematic review of narrow-band imaging for the detection and differentiation of neoplastic and nonneoplastic lesions in the colon (with videos). Gastrointest. Endosc. 69(1), 124–135 (2009)

    Article  Google Scholar 

  26. Ladabaum, U., Fioritto, A., Mitani, A., et al.: Real-time optical biopsy of colon polyps with narrow band imaging in community practice does not yet meet key thresholds for clinical decisions. Gastroenterology 144(1), 81–91 (2013)

    Article  Google Scholar 

  27. Togashi, K., Osawa, H., Koinuma, K., et al.: A comparison of conventional endoscopy, chromoendoscopy, and the optimal-band imaging system for the differentiation of neoplastic and non-neoplastic colonic polyps. Gastrointest. Endosc. 69(3), 734–741 (2009)

    Article  Google Scholar 

  28. Kuiper, T., Marsman, W.A., Jansen, J.M., et al.: Accuracy for optical diagnosis of small colorectal polyps in nonacademic settings. Clin. Gastroenterol. Hepatol. 10(9), 1016–1020 (2012)

    Article  Google Scholar 

  29. Yamada, M., Shino, R., Kondo, H., et al.: Robust automated prediction of the revised Vienna classification in colonoscopy using deep learning: development and initial external validation. J. Gastroenterol. 57(11), 879–889 (2022)

    Article  Google Scholar 

  30. Ribeiro, E., Uhl, A., Häfner, M.: Colonic polyp classification with convolutional neural networks. In: IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), pp. 253–258. IEEE (2016)

    Google Scholar 

  31. Intrator, Y., Aizenberg, N., Livne, A., et al.: Self-supervised polyp re-identification in colonoscopy. arXiv preprint arXiv:2306.08591 (2023)

  32. Chen, P.J., Lin, M.C., Lai, M.J., et al.: Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology 154(3), 568–575 (2018)

    Article  Google Scholar 

  33. Björnsson, B., Borrebaeck, C., Elander, N., et al.: Digital twins to personalize medicine. Genome Med. 12, 1–4 (2020)

    Article  Google Scholar 

  34. Krenzer, A., Heil, S., Fitting, D., et al.: Automated classification of polyps using deep learning architectures and few-shot learning. BMC Med. Imaging 23(1), 59 (2023)

    Article  Google Scholar 

  35. Brearley, B.J., Bose, K.R., Senthil, K., et al.: KNN approaches by using ball tree searching algorithm with Minkowski distance function on smart grid data. Indian J. Comput. Sci. Eng 13(4), 1210–1226 (2022)

    Article  Google Scholar 

  36. Wang, S., Zhu, Y., Luo, X., et al.: Knowledge extraction and distillation from large-scale image-text colonoscopy records leveraging large language and vision models. arXiv preprint arXiv:2310.11173 (2023)

Download references

Acknowledgement

This study was supported in part by the Shanghai Sailing Program (22YF1409300), International Science and Technology Cooperation Program under the 2023 Shanghai Action Plan for Science (23410710400) and National Natural Science Foundation of China (No. 62201263).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Wang or Shuo Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R. et al. (2024). EndoFinder: Online Image Retrieval for Explainable Colorectal Polyp Diagnosis. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15010. Springer, Cham. https://doi.org/10.1007/978-3-031-72117-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72117-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72116-8

  • Online ISBN: 978-3-031-72117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics