iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-70546-5_15
Global-SEG: Text Semantic Segmentation Based on Global Semantic Pair Relations | SpringerLink
Skip to main content

Global-SEG: Text Semantic Segmentation Based on Global Semantic Pair Relations

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2024 (ICDAR 2024)

Abstract

Text semantic segmentation is a crucial task in language understanding, as subsequent natural language processing tasks often require cohesive semantic blocks. This paper introduces a new perspective on this task by utilizing global semantic pair relations from both token- and sentence-level language models. This approach addresses the limitations of prior work, which concentrated solely on individual semantic units like sentences. Our model processes both local and global levels of sentence semantics via encoders and then combines the semantics obtained at each stage into a semantic embedding matrix. This matrix is then fed through a convolutional neural network and finally used as input through another encoder. This process enables the identification of semantic segmentation boundaries by describing the relationships of global semantic pairs. Furthermore, we utilize semantic embeddings from large language models and consider the positional information of text within the document to assess their efficacy in augmenting semantics. We test our model with both contemporary and historical corpora, and the results demonstrate that our approach outperforms benchmarks on each dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/record/5654858.

  2. 2.

    https://zenodo.org/record/5654841.

  3. 3.

    The code of this paper is available at https://github.com/WenjunSUN1997/text_seg.

References

  1. Arnold, S., Schneider, R., Cudré-Mauroux, P., Gers, F.A., Löser, A.: Sector: a neural model for coherent topic segmentation and classification. Trans. Assoc. Comput. Linguist. 7, 169–184 (2019)

    Article  Google Scholar 

  2. Barrow, J., Jain, R., Morariu, V., Manjunatha, V., Oard, D.W., Resnik, P.: A joint model for document segmentation and segment labeling. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 313–322 (2020)

    Google Scholar 

  3. Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Mach. Learn. 34, 177–210 (1999)

    Article  Google Scholar 

  4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  5. Boroş, E., et al.: Alleviating digitization errors in named entity recognition for historical documents. In: Proceedings of the 24th Conference on Computational Natural Language Learning, pp. 431–441 (2020)

    Google Scholar 

  6. Chen, H., Branavan, S., Barzilay, R., Karger, D.R.: Global models of document structure using latent permutations. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 371–379. Association for Computational Linguistics (2009)

    Google Scholar 

  7. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 670–680. Association for Computational Linguistics (2017)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, June 2019. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423

  9. Ehrmann, M., et al.: Extended overview of HIPE-2022: named entity recognition and linking in multilingual historical documents. In: CEUR Workshop Proceedings, pp. 1038–1063. No. 3180. CEUR-WS (2022)

    Google Scholar 

  10. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. In: 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, pp. 6894–6910. Association for Computational Linguistics (ACL) (2021)

    Google Scholar 

  11. Girdhar, N., Coustaty, M., Doucet, A.: Benchmarking NAS for article separation in historical newspapers. In: Goh, D.H., Chen, S.J., Tuarob, S. (eds.) ICADL 2023. LNCS, vol. 14457, pp. 76–88. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8085-7_7

    Chapter  Google Scholar 

  12. Glavaš, G., Nanni, F., Ponzetto, S.P.: Unsupervised text segmentation using semantic relatedness graphs. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 125–130. Association for Computational Linguistics (2016)

    Google Scholar 

  13. Glavaš, G., Somasundaran, S.: Two-level transformer and auxiliary coherence modeling for improved text segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 7797–7804 (2020)

    Google Scholar 

  14. Gong, Z., et al.: Tipster: a topic-guided language model for topic-aware text segmentation. In: Bhattacharya, A., et al. (eds.) DASFAA 2022, Part III. Lecture Notes in Computer Science, vol. 13247, pp. 213–221. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00129-1_14

    Chapter  Google Scholar 

  15. Hearst, M.A.: Multi-paragraph segmentation expository text. In: 32nd Annual Meeting of the Association for Computational Linguistics, pp. 9–16 (1994)

    Google Scholar 

  16. Li, B., Zhou, H., He, J., Wang, M., Yang, Y., Li, L.: On the sentence embeddings from pre-trained language models. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9119–9130 (2020)

    Google Scholar 

  17. Li, J., Sun, A., Joty, S.R.: SegBot: a generic neural text segmentation model with pointer network. In: IJCAI, pp. 4166–4172 (2018)

    Google Scholar 

  18. Lo, K., Jin, Y., Tan, W., Liu, M., Du, L., Buntine, W.: Transformer over pre-trained transformer for neural text segmentation with enhanced topic coherence. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3334–3340 (2021)

    Google Scholar 

  19. Lukasik, M., Dadachev, B., Papineni, K., Simões, G.: Text segmentation by cross segment attention. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4707–4716. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.380. https://aclanthology.org/2020.emnlp-main.380

  20. Moro, G., Ragazzi, L.: Semantic self-segmentation for abstractive summarization of long documents in low-resource regimes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11085–11093 (2022)

    Google Scholar 

  21. OpenAI: GPT-4 technical report (2023)

    Google Scholar 

  22. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  23. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992 (2019)

    Google Scholar 

  24. Riedl, M., Biemann, C.: TopicTiling: a text segmentation algorithm based on LDA. In: Proceedings of ACL 2012 Student Research Workshop, pp. 37–42 (2012)

    Google Scholar 

  25. Schweter, S., März, L., Schmid, K., Çano, E.: hmBERT: historical multilingual language models for named entity recognition. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, vol. 3180, pp. 1109–1129, September 2022. http://eprints.cs.univie.ac.at/7549/

  26. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  27. Touvron, H., et al.: LLaMA 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  28. Utiyama, M., Isahara, H.: A statistical model for domain-independent text segmentation. In: Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics, pp. 499–506 (2001)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  30. Wang, L., Li, S., Lü, Y., Wang, H.: Learning to rank semantic coherence for topic segmentation. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1340–1344 (2017)

    Google Scholar 

  31. Xia, J., et al.: Dialogue topic segmentation via parallel extraction network with neighbor smoothing. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2126–2131 (2022)

    Google Scholar 

  32. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)

    Google Scholar 

  33. Zhang, N., et al.: Document-level relation extraction as semantic segmentation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp. 3999–4006 (2021)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the ANNA (2019-1R40226), TERMITRAD (AAPR2020-2019-8510010), Pypa (AAPR2021-2021-12263410), and Actuadata (AAPR2022-2021-17014610) projects funded by the Nouvelle-Aquitaine Region, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, W., Tran, H.T.H., González-Gallardo, CE., Coustaty, M., Doucet, A. (2024). Global-SEG: Text Semantic Segmentation Based on Global Semantic Pair Relations. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14807. Springer, Cham. https://doi.org/10.1007/978-3-031-70546-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70546-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70545-8

  • Online ISBN: 978-3-031-70546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics