Abstract
Text semantic segmentation is a crucial task in language understanding, as subsequent natural language processing tasks often require cohesive semantic blocks. This paper introduces a new perspective on this task by utilizing global semantic pair relations from both token- and sentence-level language models. This approach addresses the limitations of prior work, which concentrated solely on individual semantic units like sentences. Our model processes both local and global levels of sentence semantics via encoders and then combines the semantics obtained at each stage into a semantic embedding matrix. This matrix is then fed through a convolutional neural network and finally used as input through another encoder. This process enables the identification of semantic segmentation boundaries by describing the relationships of global semantic pairs. Furthermore, we utilize semantic embeddings from large language models and consider the positional information of text within the document to assess their efficacy in augmenting semantics. We test our model with both contemporary and historical corpora, and the results demonstrate that our approach outperforms benchmarks on each dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
The code of this paper is available at https://github.com/WenjunSUN1997/text_seg.
References
Arnold, S., Schneider, R., Cudré-Mauroux, P., Gers, F.A., Löser, A.: Sector: a neural model for coherent topic segmentation and classification. Trans. Assoc. Comput. Linguist. 7, 169–184 (2019)
Barrow, J., Jain, R., Morariu, V., Manjunatha, V., Oard, D.W., Resnik, P.: A joint model for document segmentation and segment labeling. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 313–322 (2020)
Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Mach. Learn. 34, 177–210 (1999)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Boroş, E., et al.: Alleviating digitization errors in named entity recognition for historical documents. In: Proceedings of the 24th Conference on Computational Natural Language Learning, pp. 431–441 (2020)
Chen, H., Branavan, S., Barzilay, R., Karger, D.R.: Global models of document structure using latent permutations. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 371–379. Association for Computational Linguistics (2009)
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 670–680. Association for Computational Linguistics (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, June 2019. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423
Ehrmann, M., et al.: Extended overview of HIPE-2022: named entity recognition and linking in multilingual historical documents. In: CEUR Workshop Proceedings, pp. 1038–1063. No. 3180. CEUR-WS (2022)
Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. In: 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, pp. 6894–6910. Association for Computational Linguistics (ACL) (2021)
Girdhar, N., Coustaty, M., Doucet, A.: Benchmarking NAS for article separation in historical newspapers. In: Goh, D.H., Chen, S.J., Tuarob, S. (eds.) ICADL 2023. LNCS, vol. 14457, pp. 76–88. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8085-7_7
Glavaš, G., Nanni, F., Ponzetto, S.P.: Unsupervised text segmentation using semantic relatedness graphs. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 125–130. Association for Computational Linguistics (2016)
Glavaš, G., Somasundaran, S.: Two-level transformer and auxiliary coherence modeling for improved text segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 7797–7804 (2020)
Gong, Z., et al.: Tipster: a topic-guided language model for topic-aware text segmentation. In: Bhattacharya, A., et al. (eds.) DASFAA 2022, Part III. Lecture Notes in Computer Science, vol. 13247, pp. 213–221. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00129-1_14
Hearst, M.A.: Multi-paragraph segmentation expository text. In: 32nd Annual Meeting of the Association for Computational Linguistics, pp. 9–16 (1994)
Li, B., Zhou, H., He, J., Wang, M., Yang, Y., Li, L.: On the sentence embeddings from pre-trained language models. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9119–9130 (2020)
Li, J., Sun, A., Joty, S.R.: SegBot: a generic neural text segmentation model with pointer network. In: IJCAI, pp. 4166–4172 (2018)
Lo, K., Jin, Y., Tan, W., Liu, M., Du, L., Buntine, W.: Transformer over pre-trained transformer for neural text segmentation with enhanced topic coherence. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3334–3340 (2021)
Lukasik, M., Dadachev, B., Papineni, K., Simões, G.: Text segmentation by cross segment attention. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4707–4716. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.380. https://aclanthology.org/2020.emnlp-main.380
Moro, G., Ragazzi, L.: Semantic self-segmentation for abstractive summarization of long documents in low-resource regimes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11085–11093 (2022)
OpenAI: GPT-4 technical report (2023)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992 (2019)
Riedl, M., Biemann, C.: TopicTiling: a text segmentation algorithm based on LDA. In: Proceedings of ACL 2012 Student Research Workshop, pp. 37–42 (2012)
Schweter, S., März, L., Schmid, K., Çano, E.: hmBERT: historical multilingual language models for named entity recognition. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, vol. 3180, pp. 1109–1129, September 2022. http://eprints.cs.univie.ac.at/7549/
Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Touvron, H., et al.: LLaMA 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)
Utiyama, M., Isahara, H.: A statistical model for domain-independent text segmentation. In: Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics, pp. 499–506 (2001)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wang, L., Li, S., Lü, Y., Wang, H.: Learning to rank semantic coherence for topic segmentation. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1340–1344 (2017)
Xia, J., et al.: Dialogue topic segmentation via parallel extraction network with neighbor smoothing. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2126–2131 (2022)
Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)
Zhang, N., et al.: Document-level relation extraction as semantic segmentation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp. 3999–4006 (2021)
Acknowledgements
This work has been supported by the ANNA (2019-1R40226), TERMITRAD (AAPR2020-2019-8510010), Pypa (AAPR2021-2021-12263410), and Actuadata (AAPR2022-2021-17014610) projects funded by the Nouvelle-Aquitaine Region, France.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, W., Tran, H.T.H., González-Gallardo, CE., Coustaty, M., Doucet, A. (2024). Global-SEG: Text Semantic Segmentation Based on Global Semantic Pair Relations. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14807. Springer, Cham. https://doi.org/10.1007/978-3-031-70546-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-70546-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70545-8
Online ISBN: 978-3-031-70546-5
eBook Packages: Computer ScienceComputer Science (R0)