iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-67751-9_5
Stochastic Featurization for Active Learning | SpringerLink
Skip to main content

Stochastic Featurization for Active Learning

  • Conference paper
  • First Online:
Trustworthy Artificial Intelligence for Healthcare (TAI4H 2024)

Abstract

In recent years, the demand for high-quality data has intensified, particularly in the medical field where accurate data annotation is costly and critical. Active Learning (AL) has emerged as a pivotal approach in these scenarios, where selecting high-quality data for training machine learning models is essential. This paper introduces a novel method, “Stochastic Featurization for Active-learning” (SFAL), designed to efficiently identify hard-to-classify unlabeled data within both medical and general datasets. Unlike traditional AL methods that rely on a pre-trained estimator, SFAL extracts novelty features from the latent representations of a target model, thereby circumventing the need for extensive initial training and facilitating the selection of a diverse array of challenging medical data samples. This technique is particularly effective in the context of medical text classification and named entity recognition, areas where precise data interpretation is crucial. Our extensive testing across seven benchmark datasets, including those specific to clinical settings, confirms that SFAL surpasses existing state-of-the-art AL methods in performance, demonstrating its significant potential for advancing medical data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, N., Zadrozny, B., Langford, J.: Outlier detection by active learning. In: SIGKDD (2006)

    Google Scholar 

  2. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: ICLR (2020)

    Google Scholar 

  3. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  4. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: CVPR (2018)

    Google Scholar 

  5. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B (1995)

    Google Scholar 

  6. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. (2001)

    Google Scholar 

  7. Boros, E., et al.: Alleviating digitization errors in named entity recognition for historical documents. In: CoNLL (2020)

    Google Scholar 

  8. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks. In: AAAI (2005)

    Google Scholar 

  9. Dagan, I., Engelson, S.P.: Committee-based sampling for training probabilistic classifiers. In: Machine Learning Proceedings (1995)

    Google Scholar 

  10. Dernoncourt, F., Lee, J.Y.: PubMed 200k RCT: a dataset for sequential sentence classification in medical abstracts. In: IJCNLP (2017)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  12. Gal, Y., Islam1, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: ICML (2017)

    Google Scholar 

  13. Gissin, D., Shalev-Shwartz, S.: Discriminative active learning. In: ICLR (2019)

    Google Scholar 

  14. Hu, P., Lipton, Z., Anandkumar, A., Ramanan, D.: Active learning with partial feedback. In: ICLR (2019)

    Google Scholar 

  15. Kann, K., Cho, K., Bowman, S.R.: Towards realistic practices in low-resource natural language processing: the development set. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  16. Kholghi, M., Vine, L.D., Sitbon, L., Zuccon, G., Nguyen, A.N.: Clinical information extraction using small data: an active learning approach based on sequence representations and word embeddings. JASIST (2017)

    Google Scholar 

  17. Linh, L., Nguyen, M.T., Zuccon, G., Demartini, G.: Loss-based active learning for named entity recognition. In: IJCNN (2021)

    Google Scholar 

  18. Liu, Y., et al.: Generative adversarial active learning for unsupervised outlier detection. In: TKDE (2019)

    Google Scholar 

  19. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  20. Mao, X., Koopman, B., Zuccon, G.: A reproducibility study of goldilocks: just-right tuning of BERT for TAR. In: ECIR, vol. 14611, pp. 132–146 (2024)

    Google Scholar 

  21. Margatina, K., Vernikos, G., Barrault, L., Aletras, N.: Active learning by acquiring contrastive examples. In: EMNLP (2021)

    Google Scholar 

  22. Michalopoulos, G., Wang, Y., Kaka, H., Chen, H., Wong, A.: UmlsBERT: clinical domain knowledge augmentation of contextual embeddings using the unified medical language system metathesaurus. In: NAACL (2021)

    Google Scholar 

  23. Nguyen, D.H.M., Patrick, J.D.: Supervised machine learning and active learning in classification of radiology reports. JAMIA (2014)

    Google Scholar 

  24. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML (2004)

    Google Scholar 

  25. Parvaneh, A., Abbasnejad, E., Teney, D., Haffari, R., van den Hengel, A., Shi, J.Q.: Active learning by feature mixing. In: CVPR (2022)

    Google Scholar 

  26. Peluso, A., et al.: Deep learning uncertainty quantification for clinical text classification. J. Biomed. Inf. 149, 104576 (2024)

    Article  Google Scholar 

  27. Prokhorov, V., Shareghi, E., Li, Y., Pilehvar, M.T., Collier, N.: On the importance of the Kullback-Leibler divergence term in variational autoencoders for text generation. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  28. Sang, E.F.T.K., Meulder, F.D.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: NAACL (2003)

    Google Scholar 

  29. Seo, S., Kim, D., Ahn, Y., Lee, K.: Active learning on pre-trained language model with task-independent triplet loss. In: AAAI (2022)

    Google Scholar 

  30. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning (2012). https://doi.org/10.1007/978-3-031-01560-1

  31. Sharma, M., Zhuang, D., Bilgic, M.: Active learning with rationales for text classification. In: Mihalcea, R., Chai, J.Y., Sarkar, A. (eds.) NAACL, pp. 441–451 (2015)

    Google Scholar 

  32. Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. In: ICLR (2018)

    Google Scholar 

  33. Socher, R., et al.: Active learning by acquiring contrastive examples. In: ACL (2021)

    Google Scholar 

  34. Srinivasan, A., Vajjala, S.: A multilingual evaluation of NER robustness to adversarial inputs. In: RepL4NLP@ACL (2023)

    Google Scholar 

  35. Suominen, H., et al.: Overview of the ShaRe/CLEF eHealth evaluation lab 2013. In: CLEF (2013)

    Google Scholar 

  36. Uzuner, Ö., South, B.R., Shen, S., DuVall, S.L.: 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. JAMIA (2011)

    Google Scholar 

  37. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP (2020)

    Google Scholar 

  38. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

  39. Yu, Y., Kong, L., Zhang, J., Zhang, R., Zhang, C.: AcTune: uncertainty-based active self-training for active fine-tuning of pretrained language models. In: NAACL (2022)

    Google Scholar 

  40. Yuan, M., Lin, H.T., Boyd-Graber, J.: Cold-start active learning through self-supervised language modeling. In: EMNLP (2020)

    Google Scholar 

  41. Zhang, M., Plank, B.: Cartography active learning. In: Findings of EMNLP (2021)

    Google Scholar 

  42. Zhang, X., Zhao, J.J., Lecun, Y.: Character-level convolutional networks for text classification. In: NIPS (2015)

    Google Scholar 

  43. Zhu, J., Wang, H., Yao, T., Tsou, B.K.: Active learning with sampling by uncertainty and density for word sense disambiguation and text classification. In: COLING (2008)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Key Research and Development Program of China No. 2020AAA0109400 and the Shenyang Science and Technology Plan Fund (No. 21-102-0-09), and by the Swiss National Science Foundation (SNSF) under contract number CRSII5_205975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, L. et al. (2024). Stochastic Featurization for Active Learning. In: Chen, H., Zhou, Y., Xu, D., Vardhanabhuti, V.V. (eds) Trustworthy Artificial Intelligence for Healthcare. TAI4H 2024. Lecture Notes in Computer Science, vol 14812. Springer, Cham. https://doi.org/10.1007/978-3-031-67751-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67751-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67750-2

  • Online ISBN: 978-3-031-67751-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics