iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-63783-4_20
A Rational Logit Dynamic for Decision-Making Under Uncertainty: Well-Posedness, Vanishing-Noise Limit, and Numerical Approximation | SpringerLink
Skip to main content

A Rational Logit Dynamic for Decision-Making Under Uncertainty: Well-Posedness, Vanishing-Noise Limit, and Numerical Approximation

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

The classical logit dynamic on a continuous action space for decision-making under uncertainty is generalized to the dynamic where the exponential function for the softmax part has been replaced by a rational one that includes the former as a special case. We call the new dynamic as the rational logit dynamic. The use of the rational logit function implies that the uncertainties have a longer tail than that assumed in the classical one. We show that the rational logit dynamic admits a unique measure-valued solution and the solution can be approximated using a finite difference discretization. We also show that the vanishing-noise limit of the rational logit dynamic exists and is different from the best-response one, demonstrating that influences of the uncertainty tail persist in the rational logit dynamic. We finally apply the rational logit dynamic to a unique fishing competition data that has been recently acquired by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Swenson, B., Murray, R., Kar, S.: On best-response dynamics in potential games. SIAM J. Control. Optim. 56(4), 2734–2767 (2018)

    Article  MathSciNet  Google Scholar 

  2. Mendoza-Palacios, S., Hernández-Lerma, O.: The replicator dynamics for games in metric spaces: finite approximations. In: Ramsey, D. M., Renault, J. (eds.) Advances in dynamic games: games of conflict, evolutionary games, economic games, and games involving common interest, pp. 163–186. Birkhäuser, Cham. (2020)

    Google Scholar 

  3. Harper, M., Fryer, D.: Lyapunov functions for time-scale dynamics on Riemannian geometries of the simplex. Dyn. Games Appl. 5, 318–333 (2015)

    Article  MathSciNet  Google Scholar 

  4. Friedman, D., Ostrov, D.N.: Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two-player games. J. Econ. Theory 148(2), 743–777 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lahkar, R., Riedel, F.: The logit dynamic for games with continuous strategy sets. Games Econom. Behav. 91, 268–282 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cheung, M.W.: Pairwise comparison dynamics for games with continuous strategy space. J. Econ. Theory 153, 344–375 (2014)

    Article  MathSciNet  Google Scholar 

  7. Harper, M.: Escort evolutionary game theory. Phys. D 240(18), 1411–1415 (2011)

    Article  MathSciNet  Google Scholar 

  8. Zusai, D.: Evolutionary dynamics in heterogeneous populations: a general framework for an arbitrary type distribution. Internat. J. Game Theory 52, 1215–1260 (2023)

    Article  MathSciNet  Google Scholar 

  9. Lahkar, R., Mukherjee, S., Roy, S.: Generalized perturbed best response dynamics with a continuum of strategies. J. Econ. Theory 200, 10539 (2022)

    Article  MathSciNet  Google Scholar 

  10. Yoshioka, H.: Generalized logit dynamics based on rational logit functions. Dyn. Games Appl. In press (2024)

    Google Scholar 

  11. Kaniadakis, G.: New power-law tailed distributions emerging in κ-statistics. Europhys. Lett. 133(1), 10002 (2021)

    Article  Google Scholar 

  12. Mei, J., Xiao, C., Dai, B., Li, L., Szepesvári, C., Schuurmans, D.: Escaping the gravitational pull of softmax. Adv. Neural. Inf. Process. Syst. 33, 21130–21140 (2020)

    Google Scholar 

  13. Li, G., Wei, Y., Chi, Y., Chen, Y.: Softmax policy gradient methods can take exponential time to converge. Math. Program. 201, 707–802 (2023)

    Article  MathSciNet  Google Scholar 

  14. Abe, S.: Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. Phys. Rev. E 66(4), 046134 (2002)

    Article  MathSciNet  Google Scholar 

  15. Nakayama, S., Chikaraishi, M.: A unified closed-form expression of logit and weibit and its application to a transportation network equilibrium assignment. Transport. Res. Procedia 7, 59–74 (2015)

    Article  Google Scholar 

  16. Lahkar, R., Mukherjee, S., Roy, S.: The logit dynamic in supermodular games with a continuum of strategies: a deterministic approximation approach. Games Econom. Behav. 139, 133–160 (2023)

    Article  MathSciNet  Google Scholar 

  17. Murase, I., Iguchi, K.I.: High growth performance in the early ontogeny of an amphidromous fish, Ayu Plecoglossus altivelis altivelis, promoted survival during a disastrous river spate. Fish. Manage. Ecol. 29(3), 224–232 (2022)

    Article  Google Scholar 

  18. Barker, M., Degond, P., Wolfram, M.T.: Comparing the best-reply strategy and mean-field games: the stationary case. Eur. J. Appl. Math. 33(1), 79–110 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude towards the officers and members of HRFC for their supports on our field surveys. This study was supported by JSPS grants No. 22K14441 and No. 22H02456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Yoshioka .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to disclose.

Appendix

Appendix

Proof of Proposition 2.

The key estimate in the proof of Proposition 2 is the following; given \(\kappa \in \left( {0,1} \right]\), \(\mu \in {\rm{\mathfrak{M}}}\), \(\eta \in \left( {0,\eta_0 } \right]\) with a constant \(\eta_0 > 0\), by the boundedness of \(U\) it follows that

$$ \begin{aligned} & \left| {\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu } \right)} \right) - U\left( {x;\mu } \right)^{1/\kappa } } \right| \\ & = \left| {\left( {U\left( {x;\mu } \right)/2 + \sqrt {{U\left( {x;\mu } \right)^2 /4 + \eta^2 \kappa^{ - 2} /4}} } \right)^{\frac{1}{\kappa }} - U\left( {x;\mu } \right)^{1/\kappa } } \right| \le C\eta \\ \end{aligned} ,$$
(23)

where \(C > 0\) is a constant independent from \(\eta\). This independence is crucial in our context, particularly when considering the limit \(\eta \to + 0\) (see (27)–(28) below).

Now, for any \(t \in \left( {0,T} \right]\) and \(A \in {\rm{\mathfrak{B}}}\), it follows that

$$ \begin{aligned} & \frac{{\text{d}}}{{{\text{d}}t}}\left( {\mu_0 \left( {t,A} \right) - \mu_\eta \left( {t,A} \right)} \right) \\ & = \frac{{\int_A {U\left( {y;\mu_0 } \right)^{1/\kappa } {\text{d}}y} }}{{\int_\Omega {U\left( {y;\mu_0 } \right)^{1/\kappa } {\text{d}}y} }} - \frac{{\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_A {e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right){\text{d}}y} }}{{\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_\Omega {e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right){\text{d}}y} }} - \left( {\mu_0 \left( {t,A} \right) - \mu_\eta \left( {t,A} \right)} \right) \\ \end{aligned} .$$
(24)

We have the following estimate with a constant \(C_1 > 0\) independent from \(\eta ,\mu_0 ,\mu_\eta\):

$$ \begin{aligned} & \int_\Omega {U\left( {y;\mu_0 } \right)^{1/\kappa } {\text{d}}y\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_\Omega {e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right){\text{d}}y} } \\ & \ge \int_\Omega {U\left( {y;\mu_0 } \right)^{1/\kappa } {\text{d}}y\int_\Omega {U\left( {y;\mu_\eta } \right)^{1/\kappa } {\text{d}}y} } > C_1 > 0 \\ \end{aligned} .$$
(25)

We also have the following estimate at each \(y \in \Omega\):

$$ \begin{aligned} & \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_\Omega {e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_\eta } \right)} \right){\text{d}}x} U\left( {y;\mu_0 } \right)^{1/\kappa } - \int_\Omega {U\left( {x;\mu_0 } \right)^{1/\kappa } {\text{d}}x\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } } e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right) \\ & = \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_\Omega {e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_\eta } \right)} \right){\text{d}}x} U\left( {y;\mu_0 } \right)^{1/\kappa } - \int_\Omega {U\left( {x;\mu_0 } \right)^{1/\kappa } {\text{d}}x} U\left( {y;\mu_0 } \right)^{1/\kappa } \\ & + \int_\Omega {U\left( {x;\mu_0 } \right)^{1/\kappa } {\text{d}}x} U\left( {y;\mu_0 } \right) - \int_\Omega {U\left( {x;\mu_0 } \right)^{1/\kappa } {\text{d}}x} \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right) \\ & = \int_\Omega {\left( {\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_\eta } \right)} \right) - U\left( {x;\mu_0 } \right)^{1/\kappa } } \right){\text{d}}x} U\left( {y;\mu_0 } \right)^{1/\kappa } \\ & + \int_\Omega {U\left( {x;\mu_0 } \right)^{1/\kappa } {\text{d}}x} \left\{ {U\left( {y;\mu_\eta } \right) - \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right)} \right\} \\ & \le C_2 \left\{ \begin{gathered} \int_\Omega {\left| {\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_\eta } \right)} \right) - U\left( {x;\mu_0 } \right)^{1/\kappa } } \right|{\text{d}}x} \hfill \\ + \left| {U\left( {y;\mu_\eta } \right) - \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right)} \right| \hfill \\ \end{gathered} \right\} \\ & \le C_2 \left\{ \begin{gathered} \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_\Omega {\left| {e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_\eta } \right)} \right) - e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_0 } \right)} \right)} \right|{\text{d}}x} \hfill \\ + \int_\Omega {\left| {\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_0 } \right)} \right) - U\left( {x;\mu_0 } \right)^{1/\kappa } } \right|{\text{d}}x} \hfill \\ + \left| {U\left( {y;\mu_\eta } \right) - \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right)} \right| \hfill \\ \end{gathered} \right\} \\ \end{aligned} $$
(26)

with a constant \(C_2 > 0\) independent from \(\mu_0 ,\mu_\eta\). By (23) and \(U\left( {x;\mu_\eta } \right) > 0\), in (26) we obtain

$$ \left| {U\left( {y;\mu_\eta } \right) - \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {y;\mu_\eta } \right)} \right)} \right| \le C\eta ,$$
(27)
$$ \int_\Omega {\left| {\left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_0 } \right)} \right) - U\left( {x;\mu_0 } \right)^{1/\kappa } } \right|{\text{d}}x} \le C\eta ,$$
(28)

and

$$ \left( {\eta /\left( {2\kappa } \right)} \right)^{1/\kappa } \int_\Omega {\left| {e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_\eta } \right)} \right) - e_\kappa \left( {\eta^{ - 1} U\left( {x;\mu_0 } \right)} \right)} \right|{\text{d}}x} \le C_3 \left( {\eta_0 } \right)\left\| {\mu_\eta - \mu_0 } \right\| $$
(29)

with a constant \(C_3 \left( {\eta_0 } \right) > 0\) independent from \(\eta ,\mu_0 ,\mu_\eta\). By (24)–(29), we obtain

$$ \frac{{\text{d}}}{{{\text{d}}t}}\left( {\mu_0 \left( {t,A} \right) - \mu_\eta \left( {t,A} \right)} \right) \le C_4 \left( {\eta_0 } \right)\left( {\eta + \left\| {\mu_\eta \left( {t, \cdot } \right) - \mu_0 \left( {t, \cdot } \right)} \right\|} \right) $$
(30)

with a constant \(C_4 \left( {\eta_0 } \right) > 0\) independent from \(\eta ,\mu_0 ,\mu_\eta\). Hence, by integrating (30) for \(\left( {0,t} \right)\), and taking the variational norm yields

$$ \left\| {\mu_\eta \left( {t, \cdot } \right) - \mu_0 \left( {t, \cdot } \right)} \right\| \le 2\int_0^t {C_4 \left( {\eta_0 } \right)\left( {\eta + \left\| {\mu_\eta \left( {s, \cdot } \right) - \mu_0 \left( {s, \cdot } \right)} \right\|} \right){\text{d}}s} .$$
(31)

Applying a classical Gronwall lemma to (31) yields

$$ \left\| {\mu_\eta \left( {t, \cdot } \right) - \mu_0 \left( {t, \cdot } \right)} \right\| \le C_5 \left( {T,\eta_0 } \right)\eta \exp \left( {C_5 \left( {\eta_0 } \right)T} \right) $$
(32)

with a constant \(C_5 \left( {T,\eta_0 } \right) > 0\) depending on \(\eta_0 ,T\) but not on \(\mu_0 ,\mu_\eta\). The conclusion (10) directly follows from (32).

Collected Data

The number of catches of the fish P. altivelis in each pair in each Toami competition is summarized in the ascending order in Table 2. We consider that this kind of fish catch data is useful because it can be utilized not only for our study but also for other studies by other researchers. Members of each pair were anonymized. The Toami competition has been basically held by HRFC in each summer. It was not held in 2020, 2021, 2022 due to the outbreak of the coronavirus disease 2019. The data before 2015 may exist but was not available for us.

Table 2. The number of catches of the fish P. altivelis in each group in each year.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshioka, H., Tsujimura, M., Yoshioka, Y. (2024). A Rational Logit Dynamic for Decision-Making Under Uncertainty: Well-Posedness, Vanishing-Noise Limit, and Numerical Approximation. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14838. Springer, Cham. https://doi.org/10.1007/978-3-031-63783-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63783-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63785-8

  • Online ISBN: 978-3-031-63783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics