iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-62922-8_27
Extending CMSA with Reinforcement Learning: Application to Minimum Dominating Set | SpringerLink
Skip to main content

Extending CMSA with Reinforcement Learning: Application to Minimum Dominating Set

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14754))

Included in the following conference series:

  • 199 Accesses

Abstract

This work leverages reinforcement learning for designing a new variant of Construct, Merge, Solve and Adapt (CMSA), a rather new hybrid metaheuristic for combinatorial optimization. We demonstrate a twofold improvement over the standard CMSA. Firstly, the new variant simplifies CMSA by eliminating the need for a greedy function to probabilistically generate solutions. Additionally, it performs better, as we demonstrate in the context of the Minimum Dominating Set (MDS) problem.

The research presented in this paper was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  Google Scholar 

  2. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve & adapt a new general algorithm for combinatorial optimization. Comput. Oper. Res. 68, 75–88 (2016)

    Article  MathSciNet  Google Scholar 

  3. Erdös, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6(290–297), 18 (1959)

    Google Scholar 

  4. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman (1979)

    Google Scholar 

  5. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: Iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  7. Woolson, R.F.: Wilcoxon signed-rank test. Wiley Encycl. Clin. Trials 1–3 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Reixach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reixach, J., Blum, C. (2024). Extending CMSA with Reinforcement Learning: Application to Minimum Dominating Set. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62922-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62921-1

  • Online ISBN: 978-3-031-62922-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics