Abstract
Whereas distributed computing research has been very successful in exploring the solvability/impossibility border of distributed computing problems like consensus in representative classes of computing models with respect to model parameters like failure bounds, this is not the case for characterizing necessary and sufficient communication requirements. In this paper, we introduce network abstractions as a novel approach for modeling communication requirements in asynchronous distributed systems. A network abstraction of a run is a sequence of directed graphs on the set of processes, where the i-th graph defines the potential message chains that may arise in the i-th portion of the run. Formally, it is defined via associating (potential) message sending times with the corresponding message receiving times in a message schedule. Network abstractions allow to reason about the future causal cones that might arise in a run, hence also facilitate reasoning about liveness properties, and are inherently compatible with temporal epistemic reasoning frameworks. We demonstrate the utility of our approach by providing necessary and sufficient network abstractions for solving the canonical firing rebels with relay (FRR) problem, and variants thereof, in asynchronous systems with up to f byzantine processes. FRR is not only a basic primitive in clock synchronization and consensus algorithms, but also integrates several distributed computing problems, namely triggering events, agreement and even stabilizing agreement, in a single problem instance.
H. R. Galeana—This work was supported by the FWF projects ByzDEL (P33600) and DMAC (P32431), and the Doctoral College Resilient Embedded Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum Wien.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
An Arxiv version of this paper may be consulted at [13].
References
Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–239. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35668-1_16
Basu, A., Charron-Bost, B., Toueg, S.: Crash failures vs. crash + link failures. In: PODC 1996, p. 246. ACM Press, Philadelphia (1996). https://doi.org/10.1145/248052.248102
Ben-Zvi, I., Moses, Y.: Beyond Lamport’s happened-before: on time bounds and the ordering of events in distributed systems. J. ACM 61(2), 13:1–13:26 (2014). https://doi.org/10.1145/2542181, http://doi.acm.org/10.1145/2542181
Charron-Bost, B., Moran, S.: The firing squad problem revisited. Theoret. Comput. Sci. 793, 100–112 (2019). https://doi.org/10.1016/j.tcs.2019.07.023
Charron-Bost, B., Moran, S.: Minmax algorithms for stabilizing consensus. Distrib. Comput. 34(3), 195–206 (2021). https://doi.org/10.1007/s00446-021-00392-9
Coan, B.A., Dolev, D., Dwork, C., Stockmeyer, L.: The distributed firing squad problem. In: STOC 1985, pp. 335–345. ACM, New York (1985). https://doi.org/10.1145/22145.22182
Étienne Coulouma, Godard, E., Peters, J.: A characterization of oblivious message adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015). https://doi.org/10.1016/j.tcs.2015.01.024, https://www.sciencedirect.com/science/article/pii/S0304397515000602
Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving symmetry in chains and rings. J. ACM 55(1), 3:1–3:28 (2008). https://doi.org/10.1145/1326554.1326557
Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)
Fischer, M.J., Lynch, N., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distrib. Comput. 1(1), 26–39 (1986)
Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)
Fruzsa, K., Kuznets, R., Schmid, U.: Fire! In: TARK 2021. EPTCS, vol. 335, pp. 139–153 (2021). https://doi.org/10.4204/EPTCS.335.13
Galeana, H.R., Schmid, U.: Network abstractions for characterizing communication requirements in asynchronous distributed systems (2023). https://doi.org/10.48550/arXiv.2310.12615
Rincon Galeana, H., Winkler, K., Schmid, U., Rajsbaum, S.: A topological view of partitioning arguments: reducing k-set agreement to consensus. In: Ghaffari, M., Nesterenko, M., Tixeuil, S., Tucci, S., Yamauchi, Y. (eds.) SSS 2019. LNCS, vol. 11914, pp. 307–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34992-9_25
Godard, E., Perdereau, E.: k-set agreement in communication networks with omission faults. In: OPODIS 2016. LIPICS, vol. 70, pp. 8:1–8:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.OPODIS.2016.8
Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: PODC 2012, pp. 355–364. ACM, New York (2012). https://doi.org/10.1145/2332432.2332504
Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1997). https://books.google.at/books?id=yiV6pwAACAAJ
Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K.: Causality and epistemic reasoning in byzantine multi-agent systems. In: TARK 2019. EPTCS, vol. 297, pp. 293–312. Open Publishing Association (2019). https://doi.org/10.4204/EPTCS.297.19
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/357172.357176
Mendes, H., Tasson, C., Herlihy, M.: Distributed computability in byzantine asynchronous systems. In: STOC 2014, pp. 704–713. ACM, New York (2014). https://doi.org/10.1145/2591796.2591853
Nowak, T., Schmid, U., Winkler, K.: Topological characterization of consensus under general message adversaries. In: PODC 2019, pp. 218–227. ACM, New York (2019).https://doi.org/10.1145/3293611.3331624
Robinson, P., Schmid, U.: The asynchronous bounded-cycle model. Theoret. Comput. Sci. 412(40), 5580–5601 (2011). https://doi.org/10.1016/j.tcs.2010.08.001
Schmid, U., Schwarz, M., Winkler, K.: On the strongest message adversary for consensus in directed dynamic networks. In: SIROCCO 2018, pp. 102–120 (2018).https://doi.org/10.1007/978-3-030-01325-7_13
Schwarz, M., Schmid, U.: Round-oblivious stabilizing consensus in dynamic networks. In: Johnen, C., Schiller, E.M., Schmid, S. (eds.) SSS 2021. LNCS, vol. 13046, pp. 154–172. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91081-5_11
Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987). https://doi.org/10.1007/BF01667080
Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: PODC 2015, pp. 451–460. ACM, New York (2015). https://doi.org/10.1145/2767386.2767399
Widder, J., Schmid, U.: The Theta-model: achieving synchrony without clocks. Distrib. Comput. 22(1), 29–47 (2009). https://doi.org/10.1007/s00446-009-0080-x, http://www.vmars.tuwien.ac.at/documents/extern/1724/paper.pdf
Winkler, K., Paz, A., Rincon Galeana, H., Schmid, S., Schmid, U.: The time complexity of consensus under oblivious message adversaries. In: ITCS 2023, vol. 251, pp. 100:1–100:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023). https://doi.org/10.4230/LIPIcs.ITCS.2023.100, https://drops.dagstuhl.de/opus/volltexte/2023/17603
Winkler, K., Schwarz, M., Schmid, U.: Consensus in directed dynamic networks with short-lived stability. Distrib. Comput. 32(5), 443–458 (2019). https://doi.org/10.1007/s00446-019-00348-0
Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: STOC 79, 30 April–2 May 1979, Atlanta, Georgia, USA, pp. 209–213 (1979). https://doi.org/10.1145/800135.804414, http://doi.acm.org/10.1145/800135.804414
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rincon Galeana, H., Schmid, U. (2024). Network Abstractions for Characterizing Communication Requirements in Asynchronous Distributed Systems. In: Emek, Y. (eds) Structural Information and Communication Complexity. SIROCCO 2024. Lecture Notes in Computer Science, vol 14662. Springer, Cham. https://doi.org/10.1007/978-3-031-60603-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-60603-8_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60602-1
Online ISBN: 978-3-031-60603-8
eBook Packages: Computer ScienceComputer Science (R0)