iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-60433-1_20
Greenhouse Gas Emissions as Commons: A Community Service Approach with Blockchain on the Edge | SpringerLink
Skip to main content

Greenhouse Gas Emissions as Commons: A Community Service Approach with Blockchain on the Edge

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2024)

Abstract

Designing distributed infrastructures for the common good becomes a driver of decarbonization as one of the significant endeavors of this time. This article explores the design principles for a community service approach in developing resilient infrastructure, as well as secure tools for managing greenhouse gas emissions. We introduce the prototype of an information system that utilizes blockchain technology and edge computing for collaborative automation of measuring, reporting, and verifying (MRV) greenhouse gas (GHG) emissions. In addition, the paper discusses the concept and early results of a field trial conducted with industry partners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, M., Suriadi, S., Kumar, A., ter Hofstede, A.H.M.: Flexible integration of blockchain with business process automation: a federated architecture. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020. LNBIP, vol. 386, pp. 1–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58135-0_1

    Chapter  Google Scholar 

  2. Al Kawasmi, E., Arnautovic, E., Svetinovic, D.: Bitcoin-based decentralized carbon emissions trading infrastructure model. Syst. Eng. 18(2), 115–130 (2015). https://doi.org/10.1002/sys.21291

  3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference (EuroSys 2018), pp. 1–15 (2018). https://doi.org/10.1145/3190508.3190538

  4. Baumann, T.: Blockchain and emerging digital technologies for enhancing post-2020 climate markets (2018). https://doi.org/10.13140/RG.2.2.12242.71368

  5. Beck, R., Mueller-Bloch, C., King, J.: Governance in the blockchain economy: a framework and research agenda. J. Assoc. Inform. Syst. 19, 1020–1034 (2018). https://doi.org/10.17705/1jais.00518

  6. Braden, S.: Blockchain potentials and limitations for selected climate policy instruments (2019). https://www.giz.de/en/downloads/giz2019-en-blockchain-potentials-for-climate.pdf

  7. Caldarelli, G.: Before ethereum. the origin and evolution of blockchain oracles. IEEE Access 11, 50899–50917 (2023). https://doi.org/10.1109/ACCESS.2023.3279106

  8. Coria, J., Jaraitė, J.: Transaction costs of upstream versus downstream pricing of CO2 emissions. Environ. Resour. Econ. 72(4), 965–1001 (2019). https://doi.org/10.1007/s10640-018-0235-y

  9. Dawson, B., Spannagle, M.: Clean Development Mechanism Methodology Booklet (CDM) (2020). https://cdm.unfccc.int/methodologies/documentation/meth-booklet.pdf

  10. Dorfleitner, G., Braun, D.: Fintech, digitalization and blockchain: possible applications for green finance. In: Migliorelli, M., Dessertine, P. (eds.) The Rise of Green Finance in Europe. PSIF, pp. 207–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22510-0_9

    Chapter  Google Scholar 

  11. Eckert, J., López, D., Azevedo, C.L., Farooq, B.: A blockchain-based user-centric emission monitoring and trading system for multi-modal mobility. CoRR abs/1908.0 (8 2019). http://arxiv.org/abs/1908.05629

  12. Falazi, G., et al.: Smart Contract Invocation Protocol (SCIP): a protocol for the uniform integration of heterogeneous blockchain smart contracts. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 134–149. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_9

    Chapter  Google Scholar 

  13. FlowForge Inc.: FlowFuse (2024). https://flowfuse.com/

  14. Gawusu, S., et al.: Renewable energy sources from the perspective of blockchain integration: from theory to application. Sustain. Energy Technol. Assessments 52, 102108 (2022). https://doi.org/10.1016/j.seta.2022.102108

  15. Gorski, T., Bednarski, J.: Applying model-driven engineering to distributed ledger deployment. IEEE Access 8, 118245–118261 (2020). https://doi.org/10.1109/ACCESS.2020.3005519

    Article  Google Scholar 

  16. Gräther, W., Kolvenbach, S., Ruland, R., Schütte, J., Torres, C., Wendland, F.: Blockchain for education: lifelong learning passport. In: Proceedings of 1st ERCIM Blockchain workshop 2018. European Society for Socially Embedded Technologies (EUSSET) (2018). https://dl.eusset.eu/items/b02679a3-7e9b-4b22-8249-009737a0d52d

  17. Green token GmbH: About us (2023). https://fundtheplanet.net/

  18. Greiner, M., Zeiß, C., Lechner, U., Winkelmann, A.: Towards a governance model design for blockchain-based traceability systems. In: 18th International Conference on Design Science Research in Information Systems and Technology (2023). https://doi.org/10.18726/2023_2

  19. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968). http://www.jstor.org/stable/1724745

  20. Hess, C., Ostrom, E. (eds.): Understanding Knowledge as a Commons. The MIT Press (2006). https://doi.org/10.7551/mitpress/6980.001.0001

  21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). https://doi.org/10.2307/25148625

    Article  Google Scholar 

  22. Hofmeier, M., Seidenfad, K., Rieb, A., Lechner, U.: Risk factors for malicious insider threats - an analysis of attack scenarios. In: Americas Conference on Information Systems (AMCIS) 2023 (in press). Panama City (2023). https://aisel.aisnet.org/amcis2023/sig_sec/sig_sec/3/

  23. Hofmeier, M., Seidenfad, K., Hommel, W.: Validating a modified JSON web signature format using the scenario of ammunition issuance for training purposes. In: MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM), pp. 237–238 (2023). https://doi.org/10.1109/MILCOM58377.2023.10356342

  24. Hoiss, T., Seidenfad, K., Lechner, U.: Blockchain service operations - a structured approach to operate a blockchain solution. In: 2021 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), pp. 11–19. IEEE (8 2021). https://doi.org/10.1109/DAPPS52256.2021.00007

  25. Hyperledger foundation: hyperledger bevel (2024). https://github.com/hyperledger/bevel

  26. ITGI: Board briefing on IT governance (2001). www.itgi.org

  27. Jain, G., Shrivastava, A., Paul, J., Batra, R.: Blockchain for SME clusters: an ideation using the framework of ostrom commons governance. Inform. Syst. Front. 24(4), 1125–1143 (2022). https://doi.org/10.1007/s10796-022-10288-z

  28. Jensen, T., Hedman, J., Henningsson, S.: How TradeLens delivers business value with blockchain technology. MIS Q. Executive 18(4), 221–243 (2019). https://doi.org/10.17705/2msqe.00018

  29. Labazova, O.: Towards a framework for evaluation of blockchain implementations. In: 40th International Conference on Information Systems, ICIS 2019 (2019)

    Google Scholar 

  30. Ladleif, J., Friedow, C., Weske, M.: An architecture for multi-chain business process choreographies. In: Abramowicz, W., Klein, G. (eds.) BIS 2020. LNBIP, vol. 389, pp. 184–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53337-3_14

    Chapter  Google Scholar 

  31. Lamken, D., et al.: Design patterns and framework for blockchain integration in supply chains. In: 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1–3. IEEE (5 2021). https://doi.org/10.1109/ICBC51069.2021.9461062

  32. Laurier, W.: Blockchain value networks. In: 2019 IEEE Social Implications of Technology (SIT) and Information Management (SITIM), pp. 1–6 (2019). https://doi.org/10.1109/SITIM.2019.8910187.

  33. Laurier, W., Schwaiger, W.S., Polovina, S.: Traditional accounting with decentralised ledger technology. In: CEUR Workshop Proceedings 2574, 202–208 (2020). https://ceur-ws.org/Vol-2574/short18.pdf

  34. Liu, Y., He, D., Obaidat, M.S., Kumar, N., Khan, M.K., Raymond Choo, K.K.: Blockchain-based identity management systems: a review. J. Netw. Comput. Appl. 166, 102731 (2020). https://doi.org/10.1016/j.jnca.2020.102731

  35. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: a business process execution engine on the Ethereum blockchain. Softw. - Pract. Experience 49(7), 1162–1193 (2019). https://doi.org/10.1002/spe.2702

    Article  Google Scholar 

  36. Michaelowa, A., Brescia, D., Wohlgemuth, N., Galt, H., Espelage, A., Maxinez, L.: CDM method transformation: updating and transforming CDM methods for use in an Article 6 context. Tech. rep., University of Zurich, Zurich (2020). https://doi.org/10.5167/uzh-195559

  37. Miehle, D., Henze, D., Seitz, A., Luckow, A., Bruegge, B.: PartChain: a decentralized traceability application for multi-tier supply chain networks in the automotive industry. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp. 140–145. IEEE, Newark, CA, USA (4 2019). https://doi.org/10.1109/DAPPCON.2019.00027

  38. Monrat, A.A., Schelén, O., Andersson, K.: A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access 7, 117134–117151 (2019). https://doi.org/10.1109/ACCESS.2019.2936094

    Article  Google Scholar 

  39. OpenJS Foundation & Contributors: NODE-RED (2013). https://nodered.org

  40. Ostrom, E.: Governing the Commons: The Evolution of Institutions for Collective Action. Political Economy of Institutions and Decisions, Cambridge University Press (1990). https://doi.org/10.1017/CBO9780511807763

  41. Ostrom, E.: A multi-scale approach to coping with climate change and other collective action problems. Solutions 1 (2010). http://thesolutionsjournal.com/print/565

  42. Oxford University Press: Definition of non-state actor (2021). https://www.lexico.com/definition/non-state_actor

  43. Partnership for Market Readiness (PMR): establishing scaled-up crediting program baselines under the Paris agreement : issues and options (2017). https://openknowledge.worldbank.org/handle/10986/28785

  44. Poux, P., de Filippi, P., Ramos, S.: Blockchains for the governance of common goods. In: Proceedings of the 1st International Workshop on Distributed Infrastructure for Common Good, pp. 7–12. DICG 2020, ACM, New York, NY, USA (12 2020). https://doi.org/10.1145/3428662.3428793

  45. Rafael Cobo: Artisan (2023). https://github.com/artisan-roaster-scope

  46. Red Hat Inc.: Red Hat OpenShift (2023). https://docs.openshift.com/

  47. Richardson, A., Xu, J.: Carbon Trading with Blockchain. Springer International Publishing, Cham (2020). https://link.springer.com/chapter/10.1007/978-3-030-53356-4-7

  48. Ross, J.W., Weill, P.: How top performers manage IT Decisions Rights for Superior Results. No. Harvard Business School Press Boston, Massachusetts, Harvard Business Press (2004). http://www.msu.ac.zw/elearning/material/1300172657060910 it governance matrix2535p4.pdf

  49. Sato, T., Himura, Y., Nemoto, J.: Design and evaluation of smart-contract-based system operations for permissioned blockchain-based systems. arXiv (1 2019). http://arxiv.org/abs/1901.11249

  50. Saxena, M., Sanchez, M., Knuszka, R.: Method for providing healthcare-related, blockchain-associated cognitive insights using blockchains (2018). https://patents.google.com/patent/ US20180165416A1/en

  51. Schletz, M., Franke, L., Salomo, S.: Blockchain application for the Paris agreement carbon market mechanism-a decision framework and architecture. Sustainability (2020). https://doi.org/10.3390/su12125069

    Article  Google Scholar 

  52. Schneider, L., et al.: Robust accounting of international transfers under article 6 of the Paris agreement discussion paper (2017). https://www.dehst.de/SharedDocs/downloads/EN/project-mechanisms/discussion-papers/Differences_and_commonalities_paris_agreement2.pdf?__blob=publicationFile &v=4

  53. Seidenfad, K., Biermann, J., Lechner, U., Greiner, M., Biermann, J., Lechner, U.: CarbonEdge: demonstrating blockchain-based monitoring, reporting and verification of greenhouse gas emissions on the edge. In: 2023 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 123–147. Dubai (2023). https://doi.org/10.1109/ICBC56567.2023.10174891, https://link.springer.com/10.1007/978-3-031-40852-6%5C_7

  54. Seidenfad, K., Biermann, J., Olzem, P.: CarbonEdge Github repository (2023). https://github.com/KSilkThread/carbonedge

  55. Seidenfad, K., Greiner, M., Biermann, J., Lechner, U.: CarbonEdge: collaborative blockchain-based monitoring, reporting, and verification of greenhouse gas emissions on the edge. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) Proceedings of the 23rd International Conference on Innovations for Community Services (I4CS 2023), pp. 123–147. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-40852-6_7, https://link.springer.com/10.1007/978-3-031-40852-6%5C_7

  56. Seidenfad, K., Greiner, M., Biermann, J., Lechner, U.: Blockchain-based monitoring, reporting and verification of ghg emissions on the network edge - a system integration study in the artisan coffee industry. In: 2024 IEEE/SICE International Symposium on System Integration (SII), pp. 1227–1228 (2024). https://doi.org/10.1109/SII58957.2024.10417510

  57. Seidenfad, K., Hrestic, R., Wagner, T.: Pull request #322 Create RunningOnArm.md on Minifabric from Hyperledger Labs (2022). https://github.com/hyperledger-labs/minifabric/pull/322

  58. Seidenfad, K., Wagner, T., Hrestic, R., Lechner, U.: Demonstrating feasibility of blockchain-driven carbon accounting - a design study and demonstrator. In: Phillipson, F., , Eichler, G., , Erfurth, C., Fahrnberger, G. (eds.) Proceedings of the 22nd International Conference on Innovations for Community Services (I4CS 2022), pp. 28–46. Springer International Publishing, Delft (2022). https://doi.org/10.1007/978-3-031-06668-9_5

  59. SIEMENS AG: kick off the carbon countdown (2021). https://new.siemens.com/global/en/company/topic-areas/product-carbon-footprint.html

  60. Streck, C.: Strengthening the Paris agreement by holding non-state actors accountable: establishing normative links between transnational partnerships and treaty implementation. Transnational Environ. Law (2021). https://doi.org/10.1017/S2047102521000091

    Article  Google Scholar 

  61. Tapscott, D., Ticoll, D., Lowy, A.: Digital capital: harnessing the power of business webs. Ubiquity 2000 (2000). https://doi.org/10.1145/341836.336231

  62. Taş, R., Tanrıöver, Ö.Ö.: A systematic review of challenges and opportunities of blockchain for E-voting. Symmetry 12(8), 1328 (2020). https://doi.org/10.3390/sym12081328

  63. United Nations: why the global stocktake is a critical moment for climate action (2023). https://unfccc.int/topics/global-stocktake/about-the-global-stocktake/why-the-global-stocktake-is-a-critical-moment-for-climate-action

  64. Van Grembergen, W., De Haes, S., Guldentops, E.: Structures, processes and relational mechanisms for IT governance. In: Strategies for Information Technology Governance, pp. 1–36. IGI Global (2011). https://doi.org/10.4018/978-1-59140-140-7.ch001

  65. Wang, Q., Su, M.: Integrating blockchain technology into the energy sector - from theory of blockchain to research and application of energy blockchain. Comput. Sci. Rev. 37, 100275 (2020). https://doi.org/10.1016/j.cosrev.2020.100275

  66. Wang, Z., Yang, L., Wang, Q., Liu, D., Xu, Z., Liu, S.: ArtChain: blockchain-enabled platform for art marketplace. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 447–454 (2019). https://doi.org/10.1109/Blockchain.2019.00068

  67. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

    Chapter  Google Scholar 

  68. Woo, J., Fatima, R., Kibert, C.J., Newman, R.E., Tian, Y., Srinivasan, R.S.: Applying blockchain technology for building energy performance measurement, reporting, and verification (MRV) and the carbon credit market: a review of the literature. Build. Environ. 205, 108199 (2021). https://doi.org/10.1016/j.buildenv.2021.108199

  69. Zheng, M., Sandner, P.: Asset tokenization of real estate in Europe. In: Lacity, M.C., Treiblmaier, H. (eds.) Blockchains and the Token Economy: Theory and Practice, pp. 179–211. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-95108-5_7

  70. Ziolkowski, R., Miscione, G., Schwabe, G.: Decision problems in blockchain governance: old wine in new bottles or walking in someone else’s shoes? J. Manag. Inf. Syst. 37(2), 316–348 (2020). https://doi.org/10.1080/07421222.2020.1759974

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Eckel from the Murnauer Kaffeerösterei for supporting the field test, Benjamin Gröschel from the Münchner Kaffeerösterei for providing datasets, and Rene Hennen from FUND THE PLANET [17] for insides about the tokenization of reforestation projects. We acknowledge funding for Project LIONS as part of dtec.bw. dtec.bw is funded by the European Commission under NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Seidenfad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seidenfad, K., Greiner, M., Biermann, J., Dannenberg, D., Keineke, S., Lechner, U. (2024). Greenhouse Gas Emissions as Commons: A Community Service Approach with Blockchain on the Edge. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60433-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60432-4

  • Online ISBN: 978-3-031-60433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics