Abstract
Probabilistic Answer Set Programming (PASP) is a powerful formalism that allows to model uncertain scenarios with answer set programs. One of the possible semantics for PASP is the credal semantics, where a query is associated with a probability interval rather than a sharp probability value. In this paper, we extend the learning from interpretations task, usually considered for Probabilistic Logic Programming, to PASP: the goal is, given a set of (partial) interpretations, to learn the parameters of a PASP program such that the product of the lower bounds of the probability intervals of the interpretations is maximized. Experimental results show that the execution time of the algorithm is heavily dependent on the number of parameters rather than on the number of interpretations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Source code and datasets available at https://github.com/damianoazzolini/pasta.
References
Alviano, M., Faber, W.: Aggregates in answer set programming. KI-Künstliche Intelligenz 32(2), 119–124 (2018). https://doi.org/10.1007/s13218-018-0545-9
Azzolini, D., Bellodi, E., Riguzzi, F.: Statistical statements in probabilistic logic programming. In: Inclezan, G.G.D., Maratea, M. (eds.) 16th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2022) (2022)
Azzolini, D., Riguzzi, F.: Optimizing probabilities in probabilistic logic programs. Theory Pract. Logic Program. 21(5), 543–556 (2021). https://doi.org/10.1017/S1471068421000260
Bellodi, E., Riguzzi, F.: Expectation maximization over binary decision diagrams for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013). https://doi.org/10.3233/IDA-130582
Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195
Cozman, F.G., Mauá, D.D.: The structure and complexity of credal semantics. In: Hommersom, A., Abdallah, S.A. (eds.) PLP 2016. CEUR Workshop Proceedings, vol. 1661, pp. 3–14. CEUR-WS.org (2016)
Cozman, F.G., Mauá, D.D.: On the semantics and complexity of probabilistic logic programs. J. Artif. Intell. Res. 60, 221–262 (2017). https://doi.org/10.1613/jair.5482
Cozman, F.G., Mauá, D.D.: The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference. Int. J. Approx. Reason. 125, 218–239 (2020). https://doi.org/10.1016/j.ijar.2020.07.004
Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002). https://doi.org/10.1613/jair.989
De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_1
De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its application in link discovery. In: Veloso, M.M. (ed.) IJCAI, pp. 2462–2467 (2007)
Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_19
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot asp solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054
Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected Boolean search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_7
Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter learning in probabilistic databases: a least squares approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 473–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9_49
Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs from interpretations. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 581–596. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_47
Islam, M.A., Ramakrishnan, C., Ramakrishnan, I.: Parameter learning in PRISM programs with continuous random variables. arXiv:1203.4287 (2012). https://doi.org/10.48550/ARXIV.1203.4287
Lee, J., Wang, Y.: Weight learning in a probabilistic extension of answer set programs. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp. 22–31. AAAI Press (2018)
Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-96826-6
Mauá, D.D., Cozman, F.G.: Complexity results for probabilistic answer set programming. Int. J. Approx. Reason. 118, 133–154 (2020). https://doi.org/10.1016/j.ijar.2019.12.003
Nickles, M.: A tool for probabilistic reasoning based on logic programming and first-order theories under stable model semantics. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 369–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_24
Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical relational artificial intelligence: logic, probability, and computation. Synth. Lect. Artif. Intell. Mach. Learn. 10(2), 1–189 (2016)
Riguzzi, F.: Foundations of Probabilistic Logic Programming: Languages, semantics, inference and learning. River Publishers, Gistrup, Denmark (2018)
Riguzzi, F., Di Mauro, N.: Applying the information bottleneck to statistical relational learning. Mach. Learn. 86(1), 89–114 (2012). https://doi.org/10.1007/s10994-011-5247-6
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) ICLP 1995, pp. 715–729. MIT Press, Cambridge (1995). https://doi.org/10.7551/mitpress/4298.003.0069
Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391–454 (2001)
Totis, P., Kimmig, A., Raedt, L.D.: Smproblog: stable model semantics in problog and its applications in argumentation. arXiv:2110.01990 (2021). https://doi.org/10.48550/ARXIV.2110.01990
Tuckey, D., Russo, A., Broda, K.: Pasocs: a parallel approximate solver for probabilistic logic programs under the credal semantics. arXiv:2105.10908 (2021). https://doi.org/10.48550/ARXIV.2105.10908
Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30
Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set programming. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1755–1762. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/243
Acknowledgment
This research was partly supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No. 952215. Damiano Azzolini was supported by IndAM - GNCS Project with code CUP_E55F22000270001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Azzolini, D., Bellodi, E., Riguzzi, F. (2024). Learning the Parameters of Probabilistic Answer Set Programs. In: Muggleton, S.H., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2022. Lecture Notes in Computer Science(), vol 13779. Springer, Cham. https://doi.org/10.1007/978-3-031-55630-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-55630-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55629-6
Online ISBN: 978-3-031-55630-2
eBook Packages: Computer ScienceComputer Science (R0)