iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-55630-2_1
Learning the Parameters of Probabilistic Answer Set Programs | SpringerLink
Skip to main content

Learning the Parameters of Probabilistic Answer Set Programs

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13779))

Included in the following conference series:

  • 86 Accesses

Abstract

Probabilistic Answer Set Programming (PASP) is a powerful formalism that allows to model uncertain scenarios with answer set programs. One of the possible semantics for PASP is the credal semantics, where a query is associated with a probability interval rather than a sharp probability value. In this paper, we extend the learning from interpretations task, usually considered for Probabilistic Logic Programming, to PASP: the goal is, given a set of (partial) interpretations, to learn the parameters of a PASP program such that the product of the lower bounds of the probability intervals of the interpretations is maximized. Experimental results show that the execution time of the algorithm is heavily dependent on the number of parameters rather than on the number of interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code and datasets available at https://github.com/damianoazzolini/pasta.

References

  1. Alviano, M., Faber, W.: Aggregates in answer set programming. KI-Künstliche Intelligenz 32(2), 119–124 (2018). https://doi.org/10.1007/s13218-018-0545-9

    Article  Google Scholar 

  2. Azzolini, D., Bellodi, E., Riguzzi, F.: Statistical statements in probabilistic logic programming. In: Inclezan, G.G.D., Maratea, M. (eds.) 16th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2022) (2022)

    Google Scholar 

  3. Azzolini, D., Riguzzi, F.: Optimizing probabilities in probabilistic logic programs. Theory Pract. Logic Program. 21(5), 543–556 (2021). https://doi.org/10.1017/S1471068421000260

    Article  MathSciNet  Google Scholar 

  4. Bellodi, E., Riguzzi, F.: Expectation maximization over binary decision diagrams for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013). https://doi.org/10.3233/IDA-130582

    Article  Google Scholar 

  5. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

    Article  Google Scholar 

  6. Cozman, F.G., Mauá, D.D.: The structure and complexity of credal semantics. In: Hommersom, A., Abdallah, S.A. (eds.) PLP 2016. CEUR Workshop Proceedings, vol. 1661, pp. 3–14. CEUR-WS.org (2016)

    Google Scholar 

  7. Cozman, F.G., Mauá, D.D.: On the semantics and complexity of probabilistic logic programs. J. Artif. Intell. Res. 60, 221–262 (2017). https://doi.org/10.1613/jair.5482

    Article  MathSciNet  Google Scholar 

  8. Cozman, F.G., Mauá, D.D.: The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference. Int. J. Approx. Reason. 125, 218–239 (2020). https://doi.org/10.1016/j.ijar.2020.07.004

    Article  MathSciNet  Google Scholar 

  9. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002). https://doi.org/10.1613/jair.989

    Article  MathSciNet  Google Scholar 

  10. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_1

    Chapter  Google Scholar 

  11. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its application in link discovery. In: Veloso, M.M. (ed.) IJCAI, pp. 2462–2467 (2007)

    Google Scholar 

  12. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_19

    Chapter  Google Scholar 

  13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot asp solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054

    Article  MathSciNet  Google Scholar 

  14. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected Boolean search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_7

    Chapter  Google Scholar 

  15. Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter learning in probabilistic databases: a least squares approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 473–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9_49

    Chapter  Google Scholar 

  16. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs from interpretations. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 581–596. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_47

    Chapter  Google Scholar 

  17. Islam, M.A., Ramakrishnan, C., Ramakrishnan, I.: Parameter learning in PRISM programs with continuous random variables. arXiv:1203.4287 (2012). https://doi.org/10.48550/ARXIV.1203.4287

  18. Lee, J., Wang, Y.: Weight learning in a probabilistic extension of answer set programs. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp. 22–31. AAAI Press (2018)

    Google Scholar 

  19. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-96826-6

    Book  Google Scholar 

  20. Mauá, D.D., Cozman, F.G.: Complexity results for probabilistic answer set programming. Int. J. Approx. Reason. 118, 133–154 (2020). https://doi.org/10.1016/j.ijar.2019.12.003

    Article  MathSciNet  Google Scholar 

  21. Nickles, M.: A tool for probabilistic reasoning based on logic programming and first-order theories under stable model semantics. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 369–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_24

    Chapter  Google Scholar 

  22. Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical relational artificial intelligence: logic, probability, and computation. Synth. Lect. Artif. Intell. Mach. Learn. 10(2), 1–189 (2016)

    Google Scholar 

  23. Riguzzi, F.: Foundations of Probabilistic Logic Programming: Languages, semantics, inference and learning. River Publishers, Gistrup, Denmark (2018)

    Google Scholar 

  24. Riguzzi, F., Di Mauro, N.: Applying the information bottleneck to statistical relational learning. Mach. Learn. 86(1), 89–114 (2012). https://doi.org/10.1007/s10994-011-5247-6

    Article  MathSciNet  Google Scholar 

  25. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) ICLP 1995, pp. 715–729. MIT Press, Cambridge (1995). https://doi.org/10.7551/mitpress/4298.003.0069

    Chapter  Google Scholar 

  26. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391–454 (2001)

    Article  MathSciNet  Google Scholar 

  27. Totis, P., Kimmig, A., Raedt, L.D.: Smproblog: stable model semantics in problog and its applications in argumentation. arXiv:2110.01990 (2021). https://doi.org/10.48550/ARXIV.2110.01990

  28. Tuckey, D., Russo, A., Broda, K.: Pasocs: a parallel approximate solver for probabilistic logic programs under the credal semantics. arXiv:2105.10908 (2021). https://doi.org/10.48550/ARXIV.2105.10908

  29. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)

    MathSciNet  Google Scholar 

  30. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30

    Chapter  Google Scholar 

  31. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set programming. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1755–1762. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/243

Download references

Acknowledgment

This research was partly supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No. 952215. Damiano Azzolini was supported by IndAM - GNCS Project with code CUP_E55F22000270001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Azzolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azzolini, D., Bellodi, E., Riguzzi, F. (2024). Learning the Parameters of Probabilistic Answer Set Programs. In: Muggleton, S.H., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2022. Lecture Notes in Computer Science(), vol 13779. Springer, Cham. https://doi.org/10.1007/978-3-031-55630-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55630-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55629-6

  • Online ISBN: 978-3-031-55630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics