Abstract
The segmentation and reconstruction of the aortic vessel tree (AVT) is necessary in detecting aortic diseases. Currently, the mainstream method must be deployed manually, which is time-consuming and requires an experienced radiologist/physician. Automatic segmentation methods developed in recent years have performed well on single-centered datasets. However, their performance degraded on multi-centered datasets due to the various specifications of the data. We propose a 3D U-Net-based robust aortic segmentation framework to address the problem. We implied Hounsfield Units (HU) adaptive method during preprocessing to reduce the variety of intensity distribution of the inter-center images. We insert convolutional block attention modules (CBAM) in our network to improve its channel and spatial representation ability. Furthermore, we set a two-stage training process and introduce the Hausdorff distance (HD) loss in the second stage to optimize the structure of the segmentation results. Using a specific validation set collected from the multicenter AVT dataset which includes samples D5, D6, K4, K5, R5, R6, our proposed method reached an average Dice Similarity Coefficient (DSC) of 0.9396 and an average HD of 16.1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Radl, L., Jin, Y., Pepe, A., et al.: AVT: multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks. Data Brief. 40, 107801 (2022)
Jin, Y., et al.: AI-based aortic vessel tree segmentation for cardiovascular diseases treatment: status quo. arXiv preprint arXiv:2108.02998 (2021)
Deng, X., et al.: Graph cut based automatic aorta segmentation with an adaptive smoothness constraint in 3D abdominal CT images. Neurocomputing 310, 46–58 (2018)
Cheung, W.K., Bell, R., Nair, A., et al.: A computationally efficient approach to segmentation of the aorta and coronary arteries using deep learning. IEEE Access 9, 108873–108888 (2021)
Scharinger, B., Pepe, A., Jin, Y., et al.: Multicenter aortic vessel tree extraction using deep learning. In: Medical Imaging 2023: Biomedical Applications in Molecular, Structural, and Functional Imaging. SPIE, vol. 12468, pp. 341–347 (2023)
Sato, J., Kido, S.: Large batch and patch size training for medical image segmentation. arXiv preprint arXiv:2210.13364 (2022)
Karimi, D., Salcudean, S.E.: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2019)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Pepe, A., et al.: Detection, segmentation, simulation and visualization of aortic dissections: a review. Med. Image Anal. 65, 101773 (2020). https://doi.org/10.1016/j.media.2020.101773
Heller, N., et al.: The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)
Zhao, B., et al.: Data From RIDER_Lung CT. The Cancer Imaging Archive (2015). https://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR
Acknowledgement
This work was supported by the National Undergraduate Training Program for Innovation and Entrepreneurship (Grant NO. 202310386013) and the National Natural Science Foundation of China (62271149), Fujian Provincial Natural Science Foundation project (2021J02019).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Zhang, Z., Huang, L. (2024). RASNet: U-Net-Based Robust Aortic Segmentation Network for Multicenter Datasets. In: Pepe, A., Melito, G.M., Egger, J. (eds) Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition. SEGA 2023. Lecture Notes in Computer Science, vol 14539. Springer, Cham. https://doi.org/10.1007/978-3-031-53241-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-53241-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53240-5
Online ISBN: 978-3-031-53241-2
eBook Packages: Computer ScienceComputer Science (R0)