iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-52213-0_6
Growth Rate of the Number of Empty Triangles in the Plane | SpringerLink
Skip to main content

Growth Rate of the Number of Empty Triangles in the Plane

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14508))

Included in the following conference series:

  • 267 Accesses

Abstract

Given a set P of n points in the plane, in general position, denote by \(N_\varDelta (P)\) the number of empty triangles with vertices in P. In this paper we investigate by how much \(N_\varDelta (P)\) changes if a point x is removed from P. By constructing a graph \(G_P(x)\) based on the arrangement of the empty triangles incident on x, we transform this geometric problem to the problem of counting triangles in the graph \(G_P(x)\). We study properties of the graph \(G_P(x)\) and, in particular, show that it is kite-free. This relates the growth rate of the number of empty triangles to the famous Ruzsa-Szemerédi problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bárány, I., Füredi, Z.: Empty simplices in Euclidean space. Can. Math. Bull. 30(4), 436–445 (1987)

    Article  MathSciNet  Google Scholar 

  2. Bárány, I., Marckert, J.-F., Reitzner, M.: Many empty triangles have a common edge. Discrete Comput. Geom. 50, 244–252 (2013). https://doi.org/10.1007/s00454-013-9506-0

    Article  MathSciNet  Google Scholar 

  3. Bárány, I., Valtr, P.: Planar point sets with a small number of empty convex polygons. Stud. Sci. Math. Hung. 41(2), 243–269 (2004)

    MathSciNet  Google Scholar 

  4. Behrend, F.A.: On sets of integers which contain no three terms in arithmetical progression. Proc. Natl. Acad. Sci. 32(12), 331–332 (1946)

    Article  MathSciNet  Google Scholar 

  5. Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry, vol. 18. Springer, New York (2005). https://doi.org/10.1007/0-387-29929-7

    Book  Google Scholar 

  6. Erdos, P.: On some unsolved problems in elementary geometry. Mat. Lapok 2(2), 1–10 (1992)

    MathSciNet  Google Scholar 

  7. Fox, J.: A new proof of the graph removal lemma. Ann. Math. 174(1), 561–579 (2011)

    Article  MathSciNet  Google Scholar 

  8. García, A.: A note on the number of empty triangles. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 249–257. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34191-5_24

    Chapter  Google Scholar 

  9. Kővári, T., Sós, V.T., Turán, P.: On a problem of Zarankiewicz. In: Colloquium Mathematicum, vol. 3, pp. 50–57. Polska Akademia Nauk (1954)

    Google Scholar 

  10. Pinchasi, R., Radoičić, R., Sharir, M.: On empty convex polygons in a planar point set. J. Comb. Theory Ser. A 3(113), 385–419 (2006)

    Article  MathSciNet  Google Scholar 

  11. Reitzner, M., Temesvari, D.: Stars of empty simplices. arXiv preprint arXiv:1808.08734 (2018)

  12. Ruzsa, I.Z., Szemerédi, E.: Triple systems with no six points carrying three triangles. Combinatorics (Keszthely, 1976) Coll. Math. Soc. J. Bolyai 18(939–945), 2 (1978)

    Google Scholar 

  13. Szemerédi, E.: Regular partitions of graphs. Computer Science Department, Stanford University (1975)

    Google Scholar 

  14. Valtr, P.: On the minimum number of empty polygons in planar point sets. Stud. Sci. Math. Hung. 30, 155–163 (1995)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharya, B.B., Das, S., Islam, S.S., Sen, S. (2024). Growth Rate of the Number of Empty Triangles in the Plane. In: Kalyanasundaram, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2024. Lecture Notes in Computer Science, vol 14508. Springer, Cham. https://doi.org/10.1007/978-3-031-52213-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52213-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52212-3

  • Online ISBN: 978-3-031-52213-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics