iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-49018-7_20
A Self-Organizing Map Clustering Approach to Support Territorial Zoning | SpringerLink
Skip to main content

A Self-Organizing Map Clustering Approach to Support Territorial Zoning

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2023)

Abstract

This work aims to evaluate three strategies for analyzing clusters of ordinal categorical data (thematic maps) to support the territorial zoning of the Alto Taquari basin, MS/MT. We evaluated a model-based method, another based on the segmentation of the multi-way contingency table, and the last one based on the transformation of ordinal data into intervals and subsequent analysis of clusters from a proposed method of segmentation of the Self-Organizing Map after the neural network training process. The results showed the adequacy of the methods based on the Self-Organizen Map and the segmentation of the contingency table, as these techniques generated unimodal clusters with distinguishable groups.

Supported by National Council for Scientific and Technological Development - CNPq, Brazil, and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project 2022.06822.PTDC. The work of Pedro Oliveira was also supported by the doctoral Grant PRT/BD/154311/2022 financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from European Union, under MIT Portugal Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P., Skupin, A. (eds.): Self-Organising Maps: Applications in Geographic Information Science. John Wiley and Sons, Chichester (2008)

    Google Scholar 

  2. Agresti, A.: Analysis of Ordinal Categorical Data. Wiley Series in Probability and Statistics. Wiley-Interscience, New York (2010)

    Book  MATH  Google Scholar 

  3. Biernacki, C., Jacques, J.: Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm. Stat. Comput. 26, 929–943 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bustos-Korts, D., et al.: Identification of environment types and adaptation zones with self-organizing maps; applications to sunflower multi-environment data in Europe. Theor. Appl. Genet. 135, 2059–2082 (2022)

    Article  Google Scholar 

  5. Costa, J.A.F., Netto, M.L.A.: Segmentação do SOM baseada em particionamento de grafos. In: VI Congresso Brasileiro de Redes Neurais, pp. 451–456 (2003)

    Google Scholar 

  6. Furtado, B.A., Sakowski, P.A.M., Tóvolli, M.H. (eds.): Modeling complex systems for public policies. Institute for Applied Economic Research, Brasília, DF (2015)

    Google Scholar 

  7. Giordan, M., Diana, G.: A clustering method for categorical ordinal data. Commun. Stat.-Theor. Methods 40(7), 1315–1334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guha, S., Rastogi, R., Shims, K.: ROCK: a robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345–366 (2000)

    Article  Google Scholar 

  9. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. J. Wiley & Sons, New York (1990)

    Book  MATH  Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  11. Liu, Y., Li, T., Zhao, W., Wang, S., Fu, B.: Landscape functional zoning at a county level based on ecosystem services bundle: methods, comparison and management indication. J. Environ. Manage. 249(109315), 1–11 (2019)

    Google Scholar 

  12. Nikparvar, B., Thill, J.C.: Machine learning of spatial data. Int. J. Geo-Inform. 10(600), 1–32 (2021). https://doi.org/10.3390/ijgi10090600

  13. Podani, J.: Braun-Blanquet’s legacy and data analysis in vegetation science. J. Veg. Sci. 17, 113–117 (2006)

    Article  Google Scholar 

  14. Pérez-Hoyos, A., Martínez, B., García-Haro, F.J., Álvaro Moreno, Gilabert, M.A.: Identification of ecosystem functional types from coarse resolution imagery using a self-organizing map approach: a case study for Spain. Remote Sens. 6, 11391–11419 (2014)

    Google Scholar 

  15. Sadeck, L.W.R., de Lima, A.M.M., Adami, M.: Artificial neural network for ecological-economic zoning as a tool for spatial planning. Pesq. Agrop. Brasileira 52(11), 1050–1062 (2022)

    Article  Google Scholar 

  16. Silva, J.S.V., Santos, R.F.: Estratégia metodológica para zoneamento ambiental: a experiência aplicada na Bacia Hidrográfica do Rio Taquari. Embrapa Informática Agropecuária, Campinas, SP (2011)

    Google Scholar 

  17. Silva, L.A., Costa, J.A.F.: A graph partitioning approach to SOM clustering. In: 12th International Conference on Intelligent Data Engineering and Automated Learning (2011)

    Google Scholar 

  18. Silva, M.A.S.d., Maciel, R.J.S., Matos, L.N., Dompieri, M.H.G.: Automatic environmental zoning with self-organizing maps. MESE 4(9), 872–881 (2018)

    Google Scholar 

  19. Silva, M.A.S.d., Matos, L.N., Santos, F.E.d.O., Dompieri, M.H.G., Moura, F.R.d.: Tracking the connection between Brazilian agricultural diversity and native vegetation change by a machine learning approach. IEEE Lat. Am. T. 20(11), 2371–2380 (2022)

    Google Scholar 

  20. Vettigli, G.: Minisom: minimalistic and NumPy-based implementation of the Self Organizing Map (2018). https://github.com/JustGlowing/minisom/

  21. Yan, Y., et al.: Exploring the applicability of self-organizing maps for ecosystem service zoning of the Guangdong-Hong Kong-Macao greater bay area. SPRS Int. J. Geo-Inf. 11(481), 1–20 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos A. S. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, M.A.S. et al. (2024). A Self-Organizing Map Clustering Approach to Support Territorial Zoning. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49018-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49017-0

  • Online ISBN: 978-3-031-49018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics