iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-48974-7_31
Separation in Distributionally Robust Monopolist Problem | SpringerLink
Skip to main content

Separation in Distributionally Robust Monopolist Problem

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2023)

Abstract

We consider a monopoly pricing problem, where a seller has multiple items to sell to a single buyer, only knowing the distribution of the buyer’s value profile. The seller’s goal is to maximize her expected revenue. In general, this is a difficult problem to solve, even if the distribution is well specified. In this paper, we solve a subclass of this problem when the distribution is assumed to belong to the class of distributions defined by given marginal partial information. Under this model, we show that the optimal strategy for the seller is a randomized posted price mechanism under which the items are sold separately, and the result continues to hold even when the buyer has a budget feasibility constraint. Consequently, under some specific ambiguity sets which include moment-based and Wasserstein ambiguity sets, we provide analytical solutions for these single-item problems. Based on the additive separation property, we show the general additive separation problem is a special case of resource allocation problems that can be solved by known polynomial-time algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandi, C., Bertsimas, D.: Optimal design for multi-item auctions: a robust optimization approach. Math. Oper. Res. 39(4), 1012–1038 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bei, X., Gravin, N., Lu, P., Tang, Z.G.: Correlation-robust analysis of single item auction. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 193–208. SIAM (2019)

    Google Scholar 

  3. Bergemann, D., Schlag, K.: Robust monopoly pricing. J. Econ. Theory 146(6), 2527–2543 (2011)

    Article  MathSciNet  Google Scholar 

  4. Blanchet, J., Murthy, K.: Quantifying distributional model risk via optimal transport. Math. Oper. Res. 44(2), 565–600 (2019)

    Article  MathSciNet  Google Scholar 

  5. Carrasco, V., Luz, V.F., Kos, N., Messner, M., Monteiro, P., Moreira, H.: Optimal selling mechanisms under moment conditions. J. Econ. Theory 177, 245–279 (2018)

    Article  MathSciNet  Google Scholar 

  6. Carroll, G.: Robustness and separation in multidimensional screening. Econometrica 85(2), 453–488 (2017)

    Article  MathSciNet  Google Scholar 

  7. Che, Y.K., Zhong, W.: Robustly-optimal mechanism for selling multiple goods. In: Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 314–315 (2021)

    Google Scholar 

  8. Chen, X., He, S., Jiang, B., Ryan, C.T., Zhang, T.: The discrete moment problem with nonconvex shape constraints. Oper. Res. 69(1), 279–296 (2021)

    Article  MathSciNet  Google Scholar 

  9. Chen, Z., Hu, Z., Wang, R.: Screening with limited information: a dual perspective and a geometric approach. Available at SSRN 3940212 (2021)

    Google Scholar 

  10. Chen, Z., He, S., Wang, Z., Zheng, M.: Robust monopoly pricing: deterministic and randomized mechanisms under asymmetric information. Available at SSRN 4454460 (2023)

    Google Scholar 

  11. Daskalakis, C., Deckelbaum, A., Tzamos, C.: The complexity of optimal mechanism design. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1302–1318. SIAM (2014)

    Google Scholar 

  12. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  Google Scholar 

  13. Du, S.: Robust mechanisms under common valuation. Econometrica 86(5), 1569–1588 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gao, R., Chen, X., Kleywegt, A.J.: Wasserstein distributionally robust optimization and variation regularization. Oper. Res. (2022)

    Google Scholar 

  15. Gao, R., Kleywegt, A.: Distributionally robust stochastic optimization with Wasserstein distance. Math. Oper. Res. (2022)

    Google Scholar 

  16. Gravin, N., Lu, P.: Separation in correlation-robust monopolist problem with budget. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2069–2080. SIAM (2018)

    Google Scholar 

  17. Guo, J., He, S., Jiang, B., Wang, Z.: A unified framework for generalized moment problems: a novel primal-dual approach. arXiv preprint arXiv:2201.01445 (2022)

  18. Hart, S., Reny, P.J.: Maximal revenue with multiple goods: nonmonotonicity and other observations. Theor. Econ. 10(3), 893–922 (2015)

    Article  MathSciNet  Google Scholar 

  19. He, W., Li, J.: Correlation-robust auction design. J. Econ. Theory 200, 105403 (2022)

    Article  MathSciNet  Google Scholar 

  20. He, W., Li, J., Zhong, W.: Order statistics of large samples: theory and an application to robust auction design. Technical report, Mimeo (2022)

    Google Scholar 

  21. Hochbaum, D.S.: Lower and upper bounds for the allocation problem and other nonlinear optimization problems. Math. Oper. Res. 19(2), 390–409 (1994)

    Article  MathSciNet  Google Scholar 

  22. Koçyiğit, Ç., Rujeerapaiboon, N., Kuhn, D.: Robust multidimensional pricing: separation without regret. Math. Program. 1–34 (2022)

    Google Scholar 

  23. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, vol. 1. World Scientific (2009)

    Google Scholar 

  24. Li, Y., Lu, P., Ye, H.: Revenue maximization with imprecise distribution. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1582–1590 (2019)

    Google Scholar 

  25. Manelli, A.M., Vincent, D.R.: Multidimensional mechanism design: revenue maximization and the multiple-good monopoly. J. Econ. Theory 137(1), 153–185 (2007)

    Article  MathSciNet  Google Scholar 

  26. Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1–2), 115–166 (2018)

    Article  MathSciNet  Google Scholar 

  27. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  Google Scholar 

  28. Patriksson, M.: A survey on the continuous nonlinear resource allocation problem. Eur. J. Oper. Res. 185(1), 1–46 (2008)

    Article  MathSciNet  Google Scholar 

  29. Pınar, M.Ç., Kızılkale, C.: Robust screening under ambiguity. Math. Program. 163, 273–299 (2017)

    Article  MathSciNet  Google Scholar 

  30. Rahimian, H., Mehrotra, S.: Distributionally robust optimization: a review. arXiv preprint arXiv:1908.05659 (2019)

  31. Riley, J., Zeckhauser, R.: Optimal selling strategies: when to haggle, when to hold firm. Q. J. Econ. 98(2), 267–289 (1983)

    Article  Google Scholar 

  32. Singer, Y.: Budget feasible mechanisms. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 765–774. IEEE (2010)

    Google Scholar 

  33. Suzdaltsev, A.: Distributionally robust pricing in independent private value auctions. J. Econ. Theory 206, 105555 (2022)

    Article  MathSciNet  Google Scholar 

  34. Zhang, W.: Correlation-robust optimal auctions. arXiv preprint arXiv:2105.04697 (2021)

Download references

Acknowledgements

Zhen Wang received support from the National Science Foundation of China (NSFC) Grant 72301235, the Guangdong Key Lab of Mathematical Foundations for Artificial Intelligence and the Shenzhen Science and Technology Program under Grant ZDSYS20220606100601002. Simai He received support from the Major Program of National Natural Science Foundation of China (NSFC) Grant (72192830,72192832) and Grant 71825003. The authors thank the senior editor, the associate editor, and the three reviewers for constructive comments on the previous drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, H., Wang, Z., He, S. (2024). Separation in Distributionally Robust Monopolist Problem. In: Garg, J., Klimm, M., Kong, Y. (eds) Web and Internet Economics. WINE 2023. Lecture Notes in Computer Science, vol 14413. Springer, Cham. https://doi.org/10.1007/978-3-031-48974-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48974-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48973-0

  • Online ISBN: 978-3-031-48974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics