Abstract
Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that has been applied to various fields ranging from industrial to medical sectors, to perform miscellaneous Computer Vision tasks such as image classification, image segmentation, object detection, and language modeling. Notwithstanding, having a suitable model with practical applicability requires performing appropriate structural operations upon datasets, building adequate CNN architectures from the scratch or resorting to the ones available in the state-of-the-art, and, either way, parameterizing them to improve machine learning skills, usually, in a trial-and-error fashion. Aligned with this context, despite the several semi-/fully automatic approaches that can be found in the literature, (e.g., grid search for hyperparameter fine-tuning, auto-Machine Learning for self-configurable model development, and automatic methods for data arrangement and augmentation), which are often integrated with combination to establish automatic pipelines for the effective implementation of solutions powered by AI, surveys documenting such topic seem to be scarce. Therefore, the main goal of this work is to present an updated yet extensive literature review focusing on this class of approaches, considering the importance of their role in the perspective of ML Optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tuggener, L., et al.: Automated machine learning in practice: state of the art and recent results. In: 2019 6th Swiss Conference on Data Science (SDS), Bern, Switzerland, pp. 31–36. https://doi.org/10.1109/SDS.2019.00-11
Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods, Systems, Challenges. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5
Vaccaro, L., Sansonetti, G., and Micarelli, A.: An empirical review of automated machine learning. In: Computers, vol. 10, no. 1, Art. no. 1, Jan. 2021. https://doi.org/10.3390/computers10010011
Bergstra, J., Bardenet, R., Bengio, Y., an d Kegl, B.: Algorithms for hyper-parameter optimization. In: 25th Annual Conference on Neural Information Processing Systems (NIPS 2011) (2011)
Baymurzina, D., Golikov, E., Burtsev, M.: A review of neural architecture search. Neurocomputing 474, 82–93 (2022). https://doi.org/10.1016/j.neucom.2021.12.014
Jaafra, Y., Luc Laurent, J., Deruyver, A., Naceur, M.S.: Reinforcement learning for neural architecture search: a review. Image Vis. Comput. 89, 57–66 (2019). https://doi.org/10.1016/j.imavis.2019.06.005
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 1–21 (2019)
Karl, F., et al.: Multi-objective hyperparameter optimization—an overview. arXiv:2206.07438. Accessed 13 Jan 2023
Khalid, R., Javaid, N.: A survey on hyperparameters optimization algorithms of forecasting models in smart grid. ScienceDirect 61, 102275 (2020). https://doi.org/10.1016/j.scs.2020.102275
Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and applications. arXiv:2003.05689. Accessed 13 Jan 2023
Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020). https://doi.org/10.1016/j.neucom.2020.07.061
Bischl, B., et al.: Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. arXiv:2107.05847. Accessed 13 Jan 2023
Hudalizaman, Ardiyanto, I., Wibirama, S.: Network architecture search method on hyperparameter optimization of convolutional neural network: review. In: 2020 6th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, pp. 1–6 (2020). https://doi.org/10.1109/ICST50505.2020.9732800
Dong, X., Kedziora, D.J., Musial, K., Gabrys, B.: Automated Deep Learning: Neural Architecture Search Is Not the End. arXiv:2112.09245. Accessed 13 Jan 2023
Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., Shen, F.: Image Data Augmentation for Deep Learning: A Survey. arXiv:2204.08610. Accessed 13 Jan 2023
Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., Fergus, R.: Automatic Data Augmentation for Generalization in Reinforcement Learning
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G.: PRISMA group, ‘preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. (2009)
Pedregosa, F. et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2825–2830
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 281–305 (2012)
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218
Mitchell, M.: Genetic algorithms: an overview. Complexity 1(1), 31–39 (1995). https://doi.org/10.1002/cplx.6130010108
Blume, S., Benedens, T., Schramm, D.: Hyperparameter optimization techniques for designing software sensors based on artificial neural networks. Sensors 21(24), 8435 (2021). https://doi.org/10.3390/s21248435
Alibrahim, H., Ludwig, S.A.: Hyperparameter optimization: comparing genetic algorithm against grid search and Bayesian optimization. In: 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, pp. 1551–1559 (2021). https://doi.org/10.1109/CEC45853.2021.9504761
Di Francescomarino, C., et al.: Genetic algorithms for hyperparameter optimization in predictive business process monitoring. Inf. Syst. 74, 67–83 (2018). https://doi.org/10.1016/j.is.2018.01.003
Belete, D.M., Huchaiah, M.D.: Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 44(9), 875–886 (2022). https://doi.org/10.1080/1206212X.2021.1974663
Shekar, B.H., Dagnew, G.: Grid search-based hyperparameter tuning and classification of microarray cancer data. In: 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Gangtok, India, pp. 1–8 (2019). https://doi.org/10.1109/ICACCP.2019.8882943
El-Hasnony, I.M., Elzeki, O.M., Alshehri, A., Salem, H.: Multi-label active learning-based machine learning model for heart disease prediction. Sensors 22(3), 1184 (2022). https://doi.org/10.3390/s22031184
Qu, Z., Xu, J., Wang, Z., Chi, R., Liu, H.: Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method. ScienceDirect 227, 120309 (2021). https://doi.org/10.1016/j.energy.2021.120309
Sanchez, O.R., Repetto, M., Carrega, A., Bolla, R.: Evaluating ML-based DDoS detection with grid search hyperparameter optimization. In: 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, pp. 402–408 (2021). https://doi.org/10.1109/NetSoft51509.2021.9492633
Kim, C., Park, T.: Predicting determinants of lifelong learning intention using gradient boosting machine (GBM) with grid search. MDPI 14(9), 5256 (2022). https://doi.org/10.3390/su14095256
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. Accessed 13 Jan 2023. http://arxiv.org/abs/1611.01578
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 8697–8710 (2018). https://doi.org/10.1109/CVPR.2018.00907
Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018, vol. 11205, pp. 19–35. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, vol. 6683, pp. 507–523. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-25566-3_40
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. Proc. AAAI Conf. Artif. Intell. 33(01), 4780–4789 (2019). https://doi.org/10.1609/aaai.v33i01.33014780
Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. http://arxiv.org/abs/1802.03268. Accessed 13 Jan 2023
Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. Proc. AAAI Conf. Artif. Intell. 32(1) (2018). https://doi.org/10.1609/aaai.v32i1.11709
Wei, T., Wang, C., Rui, Y., Chen, C.W.: ‘Network Morphism’. http://arxiv.org/abs/1603.01670. Accessed 13 Jan 2023
Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via lamarckian evolution. http://arxiv.org/abs/1804.09081. Accessed 13 Jan 2023
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. http://arxiv.org/abs/1806.09055. Accessed 13 Jan 2023
Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. http://arxiv.org/abs/1806.10282. Accessed 13 Jan 2023
Saxena, S., Verbeek, J.: Convolutional neural fabrics. http://arxiv.org/abs/1606.02492. Accessed 13 Jan 2023
Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.-Y.: Neural architecture optimization. http://arxiv.org/abs/1808.07233. Accessed 13 Jan 2023
Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model architecture search through hypernetworks. http://arxiv.org/abs/1708.05344. Accessed 13 Jan 2023
Ha, D., Dai, A., Le, Q.V.: ‘HyperNetworks’. http://arxiv.org/abs/1609.09106. Accessed 13 Jan 2023 2023
Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. http://arxiv.org/abs/1611.02167. Accessed 13 Jan 2023
Schweitzer, P.J., Gavish, B.: An optimality principle for Markovian decision processes. J. Math. Anal. Appl. 54(1), 173–184 (1976). https://doi.org/10.1016/0022-247X(76)90243-2
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 113–123 (2019). https://doi.org/10.1109/CVPR.2019.00020
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. http://arxiv.org/abs/1707.06347. Accessed 14 Jan 2023
Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: ‘Fast AutoAugment’. http://arxiv.org/abs/1905.00397. Accessed 14 Jan 2023
Shahrokh Esfahani, M., Dougherty, E.R.: Effect of separate sampling on classification accuracy. Bioinformatics 30(2), 242–250 (2014). https://doi.org/10.1093/bioinformatics/btt662
Jones, D.R.: A Taxonomy of Global Optimization Methods Based on Response Surfaces, pp. 345–383. Springer (2001)
Moritz, P., et al.: Ray: a distributed framework for emerging AI applications. http://arxiv.org/abs/1712.05889. Accessed 14 Jan 2023
Hataya, R., Zdenek, J., Yoshizoe, K., Nakayama, H.: Faster AutoAugment: Learning Augmentation Strategies using Backpropagation. http://arxiv.org/abs/1911.06987. Accessed 14 Jan 2023
Ho, D., Liang, E., Stoica, I., Abbeel, P., Chen, X.: Population based augmentation: efficient learning of augmentation policy schedules. http://arxiv.org/abs/1905.05393. Accessed 14 Jan 2023
Zhang, X., Wang, Q., Zhang, J., Zhong, Z.: Adversarial AutoAugment. http://arxiv.org/abs/1912.11188. Accessed 14 Jan 2023
Inoue, H.: Data augmentation by pairing samples for images classification. http://arxiv.org/abs/1801.02929. Accessed 14 Jan 2023
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. http://arxiv.org/abs/1708.04552. Accessed 14 Jan 2023
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, pp. 3008–3017 (2020). https://doi.org/10.1109/CVPRW50498.2020.00359
Zoph, B., et al.: Vedaldi, A., Bischof, H., Brox, T., J.-M. Frahm (Eds.) Springer International Publishing, Cham, vol. 12372, pp. 566–583 (2020). https://doi.org/10.1007/978-3-030-58583-9_34
Cubuk, E.D., Zoph, B., Schoenholz, S.S., Le, Q.V.: Intriguing properties of adversarial examples. http://arxiv.org/abs/1711.02846. Accessed 14 Jan 2023
Muller, S.G., Hutter, F.: TrivialAugment: tuning-free yet state-of-the-art data augmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, pp. 754–762 (2021). https://doi.org/10.1109/ICCV48922.2021.00081
LingChen, T.C., Khonsari, A., Lashkari, A., Nazari, M.R., Sambee, J.S., Nascimento, M.A.: UniformAugment: a search-free probabilistic data augmentation approach. http://arxiv.org/abs/2003.14348. Accessed 14 Jan 2023
Negassi, M., Wagner, D., Reiterer, A.: Smart(Sampling)Augment: optimal and efficient data augmentation for semantic segmentation. Algorithms 15(5), 165 (2022). https://doi.org/10.3390/a15050165
Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: AugMix: a simple data processing method to improve robustness and uncertainty. http://arxiv.org/abs/1912.02781. Accessed 14 Jan 2023
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. http://arxiv.org/abs/1905.04899. Accessed 14 Jan 2023
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. http://arxiv.org/abs/1710.09412. Accessed 14 Jan 2023
Zheng, Y., Zhang, Z., Yan, S., Zhang, M.: Deep AutoAugment. http://arxiv.org/abs/2203.06172. Accessed 14 Jan 2023
Li, Y., Hu, G., Wang, Y., Hospedales, T., Robertson, N.M., Yang, Y.: DADA: differentiable automatic data augmentation. http://arxiv.org/abs/2003.03780. Accessed 14 Jan 2023
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. http://arxiv.org/abs/1611.01144. Accessed 14 Jan 2023
Grathwohl, W., Choi, D., Wu, Y., Roeder, G., Duvenaud, D.: Backpropagation through the void: optimizing control variates for black-box gradient estimation. http://arxiv.org/abs/1711.00123. Accessed 14 Jan 2023
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. http://arxiv.org/abs/1308.3432. Accessed 14 Jan 2023
Liu, A., Huang, Z., Huang, Z., Wang, N.: Direct differentiable augmentation search. http://arxiv.org/abs/2104.04282. Accessed 14 Jan 2023
Lin, C., et al.: Online hyper-parameter learning for auto-augmentation strategy. http://arxiv.org/abs/1905.07373. Accessed 14 Jan 2023
Chen, C.-Y., Chang, C.-H.: Hypernetwork-based augmentation. http://arxiv.org/abs/2006.06320. Accessed 14 Jan 2023
Acknowledgments
This work was co-financed by the project PRiiMe - Piston Rings intelligent inspection Machine (N° POCI-01-0247-FEDER-047062), financed by Portugal 2020, under the Competitiveness and Internationalization Operational Program (POCI), and by the European Regional Development Fund (ERDF). Authors would like to acknowledge the TEXP@CT Portugal Project, co-financed by the RRP - Recovery and Resilience Plan and the European NextGeneration EU Funds, within the scope of the Mobilizing Agendas for Reindustrialization, under reference C644915249-00000025. Finally, the authors would, also, like to acknowledge the Vine&Wine Portugal Project, co-financed by the RRP - Recovery and Resilience Plan and the European NextGeneration EU Funds, within the scope of the Mobilizing Agendas for Reindustrialization, under reference C644866286-00000011''.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shahrabadi, S., Adão, T., Alves, V., G.Magalhães, L. (2024). Automatic Optimization-Based Methods in Machine Learning: A Systematic Review. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-47724-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47723-2
Online ISBN: 978-3-031-47724-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)