iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-47401-9_16
SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology | SpringerLink
Skip to main content

SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Semantic segmentations of pathological entities have crucial clinical value in computational pathology workflows. Foundation models, such as the Segment Anything Model (SAM), have been recently proposed for universal use in segmentation tasks. SAM shows remarkable promise in instance segmentation on natural images. However, the applicability of SAM to computational pathology tasks is limited due to the following factors: (1) lack of comprehensive pathology datasets used in SAM training and (2) the design of SAM is not inherently optimized for semantic segmentation tasks. In this work, we adapt SAM for semantic segmentation by first introducing trainable class prompts, followed by further enhancements through the incorporation of a pathology encoder, specifically a pathology foundation model. Our framework, SAM-Path enhances SAM’s ability to conduct semantic segmentation in digital pathology without human input prompts. Through extensive experiments on two public pathology datasets, the BCSS and the CRAG datasets, we demonstrate that the fine-tuning with trainable class prompts outperforms vanilla SAM with manual prompts by 27.52% in Dice score and 71.63% in IOU. On these two datasets, the proposed additional pathology foundation model further achieves a relative improvement of 5.07% to 5.12% in Dice score and 4.50% to 8.48% in IOU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amgad, M., et al.: Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 35(18), 3461–3467 (2019)

    Article  Google Scholar 

  2. Chen, R.J., et al.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 16144–16155 (2022)

    Google Scholar 

  3. Deng, R., et al.: Segment anything model (SAM) for digital pathology: assess zero-shot segmentation on whole slide imaging. arXiv preprint arXiv:2304.04155 (2023)

  4. Ding, R., et al.: Image analysis reveals molecularly distinct patterns of TILs in NSCL associated with treatment outcome. npj Precis. Oncol. 6(1), 33 (2022)

    Google Scholar 

  5. Graham, S., et al.: MILD-Net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med. Image Anal. 52, 199–211 (2019)

    Google Scholar 

  6. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  7. Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13693. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41

  8. Kapse, S., Torre-Healy, L., Moffitt, R.A., Gupta, R., Prasanna, P.: Subtype-specific spatial descriptors of tumor-immune microenvironment are prognostic of survival in lung adenocarcinoma. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  9. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  10. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018)

    Article  Google Scholar 

  11. Lingle, W., et al.: Radiology data from the cancer genome atlas breast invasive carcinoma (TCGA-BRCA) collection. Cancer Imaging Arch. 10, K9 (2016)

    Google Scholar 

  12. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  13. Lu, C., et al.: Feature-driven local cell graph (FLocK): new computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers. Med. Image Anal. 68, 101903 (2021)

    Article  Google Scholar 

  14. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  Google Scholar 

  15. Niazi, M.K.K., Parwani, A.V., Gurcan, M.N.: Digital pathology and artificial intelligence. Lancet Oncol. 20(5), e253–e261 (2019)

    Article  Google Scholar 

  16. Pantanowitz, L., et al.: Validating whole slide imaging for diagnostic purposes in pathology: guideline from the college of American pathologists pathology and laboratory quality center. Arch. Pathol. Lab. Med. 137(12), 1710–1722 (2013)

    Article  Google Scholar 

  17. Tizhoosh, H.R., Pantanowitz, L.: Artificial intelligence and digital pathology: challenges and opportunities. J. Pathol. Inf. 9(1), 38 (2018)

    Article  Google Scholar 

  18. Weinstein, J.N., et al.: The cancer genome atlas Pan-Cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013)

    Article  Google Scholar 

  19. Zhang, J., et al.: Prompt-MIL: boosting multi-instance learning schemes via task-specific prompt tuning. arXiv preprint arXiv:2303.12214 (2023)

  20. Zhang, J., et al.: Precise location matching improves dense contrastive learning in digital pathology. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) Information Processing in Medical Imaging, IPMI 2023. LNCS, vol. 13939, pp. 783–794. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_60

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8925 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2023). SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47401-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47400-2

  • Online ISBN: 978-3-031-47401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics