iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-45676-3_16
Enhancing Anomaly Detection in Melanoma Diagnosis Through Self-Supervised Training and Lesion Comparison | SpringerLink
Skip to main content

Enhancing Anomaly Detection in Melanoma Diagnosis Through Self-Supervised Training and Lesion Comparison

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Melanoma, a highly aggressive form of skin cancer notorious for its rapid metastasis, necessitates early detection to mitigate complex treatment requirements. While considerable research has addressed melanoma diagnosis using convolutional neural networks (CNNs) on individual dermatological images, a deeper exploration of lesion comparison within a patient is warranted for enhanced anomaly detection, which often signifies malignancy. In this study, we present a novel approach founded on an automated, self-supervised framework for comparing skin lesions, working entirely without access to ground truth labels. Our methodology involves encoding lesion images into feature vectors using a state-of-the-art representation learner, and subsequently leveraging an anomaly detection algorithm to identify atypical lesions. Remarkably, our model achieves robust anomaly detection performance on ISIC 2020 without needing annotations, highlighting the efficacy of the representation learner in discerning salient image features. These findings pave the way for future research endeavors aimed at developing better predictive models as well as interpretable tools that enhance dermatologists’ efficacy in scrutinizing skin lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15750–15758 (2021)

    Google Scholar 

  2. Gaudy-Marqueste, C., et al.: Ugly duckling sign as a major factor of efficiency in Melanoma detection. JAMA Dermatol. 153(4), 279–284 (2017). https://doi.org/10.1001/jamadermatol.2016.5500

  3. Grob, J.J., Bonerandi, J.J.: The ‘ugly duckling’ sign: identification of the common characteristics of Nevi in an individual as a basis for melanoma screening. Arch. Dermatol. 134(1), 103–104 (1998)

    Google Scholar 

  4. Grob, J.J., et al.: Diagnosis of Melanoma: importance of comparative analysis and “ugly duckling” sign. J. Clin. Oncol. 30(15_suppl), 8578 (2012). https://doi.org/10.1200/jco.2012.30.15_suppl.8578

  5. Ha, Q., Liu, B., Liu, F.: Identifying melanoma images using efficientNet ensemble: winning solution to the SIIM-ISIC Melanoma classification challenge. arXiv:2010.05351 (2020). https://doi.org/10.48550/ARXIV.2010.05351. https://arxiv.org/abs/2010.05351

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385. https://arxiv.org/abs/1512.03385

  7. McInnes, L., Healy, J., Saul, N., Großberger, L.: UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018). https://doi.org/10.21105/joss.00861

  8. Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 8, 34 (2021). https://doi.org/10.1038/s41597-021-00815-z

    Article  Google Scholar 

  9. Ruff, L., et al.: Deep one-class classification. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR (2018). https://proceedings.mlr.press/v80/ruff18a.html

  10. Soenksen, L.R., et al.: Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images. Sci. Transl. Med. 13(581), eabb3652 (2021). https://doi.org/10.1126/scitranslmed.abb3652. https://www.science.org/doi/abs/10.1126/scitranslmed.abb3652

  11. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 9929–9939. PMLR (2020). https://proceedings.mlr.press/v119/wang20k.html

  12. Wazaefi, Y., et al.: Evidence of a limited intra-individual diversity of Nevi: intuitive perception of dominant clusters is a crucial step in the analysis of Nevi by dermatologists. J. Invest. Dermatol. 133(10), 2355–2361 (2013). https://doi.org/10.1038/jid.2013.183. https://www.sciencedirect.com/science/article/pii/S0022202X15359911

  13. Winkler, J.K., et al.: Melanoma recognition by a deep learning convolutional neural network-performance in different Melanoma subtypes and localisations. Eur. J. Cancer 127, 21–29 (2020). https://doi.org/10.1016/j.ejca.2019.11.020. https://www.sciencedirect.com/science/article/pii/S0959804919308640

  14. Yu, Z., et al.: End-to-end ugly duckling sign detection for melanoma identification with transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 176–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Collenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collenne, J., Iguernaissi, R., Dubuisson, S., Merad, D. (2024). Enhancing Anomaly Detection in Melanoma Diagnosis Through Self-Supervised Training and Lesion Comparison. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics