iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-44198-1_38
Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm | SpringerLink
Skip to main content

Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14261))

Included in the following conference series:

  • 872 Accesses

Abstract

Landslide is a natural disaster that can easily threaten local ecology, people’s lives and property. In this paper, we conduct modelling research on real unidirectional surface displacement data of recent landslides in the research area and propose a time series prediction framework named VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based on variational mode decomposition, which can predict the landslide surface displacement more accurately. The model performs well on the test set. Except for the random item subsequence that is hard to fit, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the trend item subsequence and the periodic item subsequence are both less than 0.1, and the RMSE is as low as 0.006 for the periodic item prediction module based on XGBoost.

M. Kong and R. Li—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, X., Yuan, Y.: Regional landslide disaster risk analysis based on big data. In: International Conference on Electronic Information Technology (EIT 2022), pp. 717–721. SPIE, Chengdu (2022)

    Google Scholar 

  2. Long, J., Li, C., Liu, Y., et al.: A multi-feature fusion transfer learning method for displacement prediction of rainfall reservoir-induced landslide with step-like deformation characteristics. Eng. Geol. 297, 106494 (2022)

    Article  Google Scholar 

  3. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 201, 5–10 (2004)

    Article  Google Scholar 

  4. Zou, Z., Yan, J., Tang, H., et al.: A shear constitutive model for describing the full process of the deformation and failure of slip zone soil. Eng. Geol. 276, 105766 (2020)

    Article  Google Scholar 

  5. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Sig. Process. 62(3), 531–544 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhu, J., Wu, P., Chen, H., et al.: Carbon price forecasting with variational mode decomposition and optimal combined model. Phys. a: Stat. Mech. Appl. 519, 140–158 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. Association for Computing Machinery, New York (2016)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 98, 1735–1780 (1997)

    Article  Google Scholar 

  9. Taylor, S.-J., Letham, B.: Forecasting at scale. Am. Stat. 721, 37–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sanchez, V.-D.: Advanced support vector machines and kernel methods. Neurocomputing 55, 5–20 (2003)

    Article  Google Scholar 

  11. Cao, Y., Yin, K., Alexander, D.E., et al.: Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides 134, 725–736 (2016)

    Article  Google Scholar 

  12. Xu, S., Niu, R.: Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area. China. Comput. Geosci. 111, 87–96 (2018)

    Article  Google Scholar 

  13. Huang, Y., Han, X., Zhao, L.: Recurrent neural networks for complicated seismic dynamic response prediction of a slope system. Eng. Geol. 289, 106198 (2021)

    Article  Google Scholar 

  14. Li, Z., Zhao, Y., Liu, R., et al.: Robust and rapid clustering of KPIs for large-scale anomaly detection. In: Proceedings of the IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE, Banff (2018)

    Google Scholar 

  15. Krishnan, R.G., Shalit, U., Sontag, D.: Deep kalman filters. arXiv preprint arXiv:1511.05121 (2015)

  16. Cong, T., Tan, R., Ottewill, J.R., et al.: Anomaly detection and mode identification in multimode processes using the field Kalman filter. IEEE Trans. Control Syst. Technol. 295, 2192–2205 (2020)

    Google Scholar 

  17. Cui, Q., Zhang, Y.: Optimization of parameters for FDM process with functional input based on LS-SVR. AIP Adv. 122, 025108 (2022)

    Article  Google Scholar 

  18. Hoaglin, D.C., Welsch, R.E.: The hat matrix in regression and ANOVA. Am. Stat. 321, 17–22 (1978)

    MATH  Google Scholar 

  19. Welch, G., Bishop, G.: An introduction to the Kalman filter (1995)

    Google Scholar 

  20. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (applied statistics) 281, 100–108 (1979)

    Google Scholar 

  21. Van Der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 151, 3221–3245 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of Hunan Province (grant number 2022JJ30673) and by the Graduate Innovation Project of Central South University (2023XQLH032, 2023ZZTS0304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, M. et al. (2023). Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14261. Springer, Cham. https://doi.org/10.1007/978-3-031-44198-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44198-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44197-4

  • Online ISBN: 978-3-031-44198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics