iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-40843-4_27
Enabling Multi-level Network Modeling in Structural Simulation Toolkit for Next-Generation HPC Network Design Space Exploration | SpringerLink
Skip to main content

Enabling Multi-level Network Modeling in Structural Simulation Toolkit for Next-Generation HPC Network Design Space Exploration

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13999))

Included in the following conference series:

  • 1721 Accesses

Abstract

The last decade has seen high-performance computing (HPC) systems become denser and denser. Higher node and rack density has led to development of multi-level networks - at socket, node, ‘pod’, rack, and between nodes. As sockets become more complex with integrated or co-packaged heterogeneous architectures, this network complexity is going to increase. In this paper, we extend Structural Simulation Toolkit (SST) to model these multi-level networks designs. We demonstrate this newly introduced capability by modeling a combination of a few different network topologies at different levels of the system and simulating the performance of collectives and some popular HPC communication patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frontier: ORNL’s exascale supercomputer designed to deliver world-leading performance in 2021. https://www.olcf.ornl.gov/frontier/

  2. Stevens, R., Ramprakash, J., Messina, P., Papka, M., Riley, K.: Aurora: argonne’s next-generation exascale supercomputer. United States (2019)

    Google Scholar 

  3. Choquette, J.: NVIDIA hopper H100 GPU: scaling performance. IEEE Micro (2023). https://doi.org/10.1109/MM.2023.3256796

  4. Smith, A., Norman, J.: AMD Instinct™ MI200 series accelerator and node architectures. In: 2022 IEEE Hot Chips 34 Symposium (HCS). IEEE Computer Society (2022)

    Google Scholar 

  5. https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html

  6. Rodrigues, A.F., et al.: The structural simulation toolkit. ACM SIGMETRICS Perform. Eval. Rev. 38(4), 37–42 (2011)

    Article  Google Scholar 

  7. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a generic framework for large-scale distributed experiments. In: Tenth International Conference on Computer Modeling and Simulation (uksim 2008), pp. 126–131. IEEE (2008)

    Google Scholar 

  8. Mubarak, M., et al.: Enabling parallel simulation of large-scale HPC network systems. IEEE Trans. Parallel Distrib. Syst. 28(1), 87–100 (2016)

    Article  Google Scholar 

  9. Musleh, M., et al.: Fabsim-X: a simulation framework for the analysis of large-scale topologies and congestion control protocols in data center networks. In: 2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE(2020)

    Google Scholar 

  10. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Günes, M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3_2

    Chapter  Google Scholar 

  11. Varga, A., Rudolf, H.: An overview of the OMNeT++ simulation environment. In: 1st International ICST Conference on Simulation Tools and Techniques for Communications, Networks and Systems (2010)

    Google Scholar 

  12. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE (2013)

    Google Scholar 

  13. Li, S., et al.: DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator. IEEE Comput. Archit. Lett. 19(2), 106–109 (2020)

    Article  Google Scholar 

  14. Stevens, J., et al.: An integrated simulation infrastructure for the entire memory hierarchy: cache, dram, nonvolatile memory, and disk. Intel Technol. J. 17(1), 184–200 (2013)

    Google Scholar 

  15. Leidel, J.D., Yong, C.: HMC-sim-2.0: a simulation platform for exploring custom memory cube operations. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE (2016)

    Google Scholar 

  16. Kim, Y., Yang, W., Mutlu, O.: Ramulator: a fast and extensible DRAM simulator. IEEE Comput. Archit. Lett. 15(1), 45–49 (2015)

    Article  Google Scholar 

  17. Bakhoda, A., et al.: Analyzing CUDA workloads using a detailed GPU simulator. In: 2009 IEEE International Symposium on Performance Analysis of Systems and Software. IEEE (2009)

    Google Scholar 

  18. Muñoz-Martínez, F., et al.: STONNE: enabling cycle-level microarchitectural simulation for DNN inference accelerators. In: 2021 IEEE International Symposium on Workload Characterization (IISWC). IEEE (2021)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Scott Hemmert from Sandia National Laboratories for answering our questions and helping us understand the SST backend better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai P. Chenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chenna, S.P., Kumar, N., Borges, L., Steyer, M., Thierry, P., Garzaran, M. (2023). Enabling Multi-level Network Modeling in Structural Simulation Toolkit for Next-Generation HPC Network Design Space Exploration. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40843-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40842-7

  • Online ISBN: 978-3-031-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics