iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-38906-1_38
Geometric Hitting Set for Line-Constrained Disks | SpringerLink
Skip to main content

Geometric Hitting Set for Line-Constrained Disks

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 836 Accesses

Abstract

Given a set P of n weighted points and a set S of m disks in the plane, the hitting set problem is to compute a subset \(P'\) of points of P such that each disk contains at least one point of \(P'\) and the total weight of all points of \(P'\) is minimized. The problem is known to be NP-hard. In this paper, we consider a line-constrained version of the problem in which all disks are centered on a line \(\ell \). We present an \(O((m+n)\log (m+n)+\kappa \log m)\) time algorithm for the problem, where \(\kappa \) is the number of pairs of disks that intersect. For the unit-disk case where all disks have the same radius, the running time can be reduced to \(O((n + m)\log (m + n))\). In addition, we solve the problem in \(O((m + n)\log (m + n))\) time in the \(L_{\infty }\) and \(L_1\) metrics, in which a disk is a square and a diamond, respectively.

This research was supported in part by NSF under Grants CCF-2005323 and CCF-2300356. A full version of this paper is available at http://arxiv.org/abs/2305.09045.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, H., et al.: Minimum-cost coverage of point sets by disks. In: Proceedings of the 22nd Annual Symposium on Computational Geometry (SoCG), pp. 449–458 (2006)

    Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000). https://doi.org/10.1007/10719839_9

    Chapter  Google Scholar 

  3. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_42

    Chapter  Google Scholar 

  4. Bus, N., Mustafa, N.H., Ray, S.: Practical and efficient algorithms for the geometric hitting set problem. Discrete Appl. Math. 240, 25–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom.: Theory Appl. 47, 112–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorithmica 3(1–4), 205–221 (1988)

    Article  MathSciNet  Google Scholar 

  7. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(1), 133–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durocher, S., Fraser, R.: Duality for geometric set cover and geometric hitting set problems on pseudodisks. In: Proceedings of the 27th Canadian Conference on Computational Geometry (CCCG) (2015)

    Google Scholar 

  9. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  10. Even, G., Rawitz, D., Shahar, S.: Hitting sets when the VC-dimension is small. Inf. Process. Lett. 95, 358–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 434–444 (1988)

    Google Scholar 

  12. Ganjugunte, S.K.: Geometric hitting sets and their variants. Ph.D. thesis, Duke University (2011)

    Google Scholar 

  13. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  15. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve combinatorial optimization problems with an application to multigenome alignment. Oper. Res. 61, 453–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG), pp. 17–22 (2009)

    Google Scholar 

  17. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44, 883–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pedersen, L., Wang, H.: On the coverage of points in the plane by disks centered at a line. In: Proceedings of the 30th Canadian Conference on Computational Geometry (CCCG), pp. 158–164 (2018)

    Google Scholar 

  19. Pedersen, L., Wang, H.: Algorithms for the line-constrained disk coverage and related problems. Comput. Geom.: Theory Appl. 105–106(101883), 1–18 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Wang, H. (2023). Geometric Hitting Set for Line-Constrained Disks. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics