iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-38100-3_3
Towards a Taxonomy for Reversible Computation Approaches | SpringerLink
Skip to main content

Towards a Taxonomy for Reversible Computation Approaches

  • Conference paper
  • First Online:
Reversible Computation (RC 2023)

Abstract

Reversible computation is a paradigm allowing computation to proceed not only in the usual, forward direction, but also backwards. Reversible computation has been studied in a variety of models, including sequential and concurrent programming languages, automata, process calculi, Turing machines, circuits, Petri nets, event structures, term rewriting, quantum computing, and others. Also, it has found applications in areas as different as low-power computing, debugging, simulation, robotics, database design, and biochemical modeling. Thus, while the broad idea of reversible computation is the same in all the areas, it has been interpreted and adapted to fit the various settings. The existing notions of reversible computation however have never been compared and categorized in detail. This work aims at being a first stepping stone towards a taxonomy of the approaches that co-exist under the term reversible computation. We hope that such a work will shed light on the relation among the various approaches.

I. Lanese has been partially supported by French ANR project DCore ANR-18-CE25-0007 and INdAM-GNCS Project CUP_E55F22000270001 “Proprietà qualitative e quantitative di sistemi reversibili”. I. Ulidowski has been partially supported by JSPS Fellowship grant S21050. G. Vidal has been partially supported by grant PID2019-104735RB-C41 funded by MCIN/AEI/ 10.13039/501100011033. J.A. Miszczak has been partially supported by NCN grant 2019/33/B/ST6/02011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following we mainly use the term model to refer to the instances of reversible computation that we consider. Indeed, many of our examples are (formal) models. However, we think that our taxonomy can be applied also to more concrete entities, such as languages, applications or systems.

References

  1. Abramsky, S.: A structural approach to reversible computation. Theor. Comput. Sci. 347(3), 441–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible Turing machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3_8

    Chapter  MATH  Google Scholar 

  3. Axelsen, H.B., Glück, R.: On reversible Turing machines and their function universality. Acta Informatica 53(5), 509–543 (2016). https://doi.org/10.1007/s00236-015-0253-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-5_9

    Chapter  MATH  Google Scholar 

  5. Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative contracts. Sci. Comput. Program. 167, 25–50 (2018)

    Google Scholar 

  6. Barylska, K., Koutny, M., Mikulski, Ł., Pia̧tkowski, M.: Reversible computation vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

    Google Scholar 

  7. Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R.B., Jacobsen, J.-H.: Understanding and mitigating exploding inverses in invertible neural networks. In: AISTATS 2021, volume 130 of Proceedings of Machine Learning Research, pp. 1792–1800. PMLR (2021)

    Google Scholar 

  8. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergstra, J.A., Ponse, A., van Wamel, J.J.: Process algebra with backtracking. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 46–91. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58043-3_17

    Chapter  Google Scholar 

  10. Bernardo, M., Mezzina, C.A.: Towards bridging time and causal reversibility. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 22–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3_2

    Chapter  MATH  Google Scholar 

  11. Bernstein, A.P., Newcomer, E.: Principles of Transaction Processing, 2nd edn. Morgan Kaufmann Publishers Inc., Burlington (2009)

    MATH  Google Scholar 

  12. Bocchi, L., Lanese, I., Mezzina, C.A., Yuen, S.: The reversible temporal process language. In: Mousavi, M.R., Philippou, A. (eds.) FORTE 2022. LNCS, vol. 13273, pp. 31–49. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08679-3_3

  13. Briggs, J.S.: Generating reversible programs. Softw. Pract. Exper. 17(7), 439–453 (1987)

    Article  Google Scholar 

  14. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow composition languages. In: POPL 2005, pp. 209–220. ACM (2005)

    Google Scholar 

  15. Caires, L., Ferreira, C., Vieira, H.: A process calculus analysis of compensations. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00945-7_6

    Chapter  Google Scholar 

  16. Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann. Comput. Sci. 21(2), 175–198 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Reversible sessions with flexible choices. Acta Inform. 56(7–8), 553–583 (2019)

    Google Scholar 

  18. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible \(\pi \)-calculus. In: LICS 2013, pp. 388–397. IEEE Computer Society (2013)

    Google Scholar 

  19. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

    Chapter  Google Scholar 

  20. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_31

    Chapter  Google Scholar 

  21. Davis, M.G., Smith, E., Tudor, A., Sen, K., Siddiqi, I., Iancu, C.: Towards optimal topology aware quantum circuit synthesis. In: QCE 2020, pp. 223–234. IEEE (2020)

    Google Scholar 

  22. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Hoboken (2010)

    Google Scholar 

  23. De Vos, A., De Baerdemacker, S., Van Rentergem, Y., Synthesis of quantum circuits vs. synthesis of classical reversible circuits. In: Synthesis Lectures on Digital Circuits and Systems. Morgan & Claypool Publishers (2018)

    Google Scholar 

  24. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A. Math. Phys. Sci. 400(1818), 97–117 (1985)

    Google Scholar 

  25. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Rep. Ser. 1(8), 1994

    Google Scholar 

  26. Feynman, P.R.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  MathSciNet  Google Scholar 

  27. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1999)

    Google Scholar 

  28. Fredkin, E., Toffoli, T.: Quantum mechanical computers. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)

    Article  Google Scholar 

  29. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26

    Chapter  Google Scholar 

  30. Glück, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative language. Comput. Softw. 33(3), 108–128 (2016)

    Google Scholar 

  31. Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans. Inf. Syst. E100-D(5), 1026–1034 (2017)

    Google Scholar 

  32. Glück, R., Yokoyama, T.: Reversible computing from a programming language perspective. Theor. Comput. Sci. 953, Article 113429 (2023)

    Google Scholar 

  33. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing activations. In: Advances in Neural Information Processing Systems. NIPS 2017, vol. 30, pp. 2214–2224. Curran Associates Inc. (2017)

    Google Scholar 

  34. Graversen, E., Phillips, I.C.C., Yoshida, N.: Event structure semantics of (controlled) reversible CCS. J. Log. Algebraic Methods Program. 121, 100686 (2021)

    Google Scholar 

  35. Haulund, T., Mogensen, T.Æ., Glück, R.: Implementing reversible object-oriented language features on reversible machines. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 66–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59936-6_5

    Chapter  MATH  Google Scholar 

  36. Hay-Schmidt, L., Glück, R., Cservenka, M.H., Haulund, T.: Towards a unified language architecture for reversible object-oriented programming. In: Yamashita, S., Yokoyama, T. (eds.) RC 2021. LNCS, vol. 12805, pp. 96–106. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79837-6_6

    Chapter  MATH  Google Scholar 

  37. Hoey, J., Ulidowski, I.: Reversing an imperative concurrent programming language. Sci. Comput. Program. 223, 102873 (2022)

    Article  Google Scholar 

  38. Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: \(\sf CoreFun\): a typed functional reversible core language. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 304–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_21

    Chapter  MATH  Google Scholar 

  39. Jacobson, J.: A formalization of DARCs patch theory using inverse semigroups. Technical report, UCLA (2009)

    Google Scholar 

  40. Kari, J.: Reversible cellular automata: from fundamental classical results to recent developments. New Gener. Comput. 36(3), 145–172 (2018)

    Article  MathSciNet  Google Scholar 

  41. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Hoboken (1979)

    Google Scholar 

  42. Knill, E.: Conventions for quantum pseudocode. Technical report LAUR-96-2724, Los Alamos National Lab (1996)

    Google Scholar 

  43. Kristensen, J.T., Kaarsgaard, R., Thomsen, M.K.: Jeopardy: an invertible functional programming language. CoRR, arXiv:2209.02422 (2022)

  44. Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci. Comput. Program. 151, 18–47 (2018)

    Article  Google Scholar 

  45. Kuhn, S., Ulidowski, I.: Modelling of DNA mismatch repair with a reversible process calculus. Theor. Comput. Sci. 925, 68–86 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78(6), 1814–1827 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_21

    Chapter  Google Scholar 

  49. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_20

    Chapter  Google Scholar 

  50. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensations. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_19

    Chapter  Google Scholar 

  51. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016)

    Google Scholar 

  52. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS 114 (2014)

    Google Scholar 

  53. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang. J. Log. Algebr. Meth. Program. 100, 71–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics for message passing concurrent programs. Fundam. Informaticae 178(3), 229–266 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lanese, I., Schultz, U.P., Ulidowski, I.: Reversible computing in debugging of Erlang programs. IT Prof. 24(1), 74–80 (2022)

    Google Scholar 

  56. Laursen, J.S., Ellekilde, L.-P.: Schultz, U.P.: Modelling reversible execution of robotic assembly. Robotica 36(5), 625–654 (2018)

    Google Scholar 

  57. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  58. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization transformation based on automatic derivation of view complement functions. In: ICFP 2007, PP. 47–58. ACM (2007)

    Google Scholar 

  59. McNellis, J., Mola, J., Sykes, K.: Time travel debugging: root causing bugs in commercial scale software. CppCon talk (2017). https://www.youtube.com/watch?v=l1YJTg_A914

  60. Melgratti, H., Mezzina, C.A., Pinna, G.M.: Towards a truly concurrent semantics for reversible CCS. In: Yamashita, S., Yokoyama, T. (eds.) RC 2021. LNCS, vol. 12805, pp. 109–125. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79837-6_7

    Chapter  MATH  Google Scholar 

  61. Melgratti, H.C., Mezzina, C.A., Pinna, G.M.: A Petri net view of covalent bonds. Theor. Comput. Sci. 908, 89–119 (2022)

    Google Scholar 

  62. Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing place transition nets. Log. Methods Comput. Sci. 16(4) (2020)

    Google Scholar 

  63. Mimram, S., Di Giusto, C.: A categorical theory of patches. In: MFPS XXIX. Electronic Notes in Theoretical Computer Science, vol. 298, PP. 283–307. Elsevier (2013)

    Google Scholar 

  64. Miszczak, J.: Models of quantum computation and quantum programming languages. Bull. Polish Acad. Sci. Tech. Sci. 59(3), 305–324 (2011)

    MATH  Google Scholar 

  65. Miszczak, J.: High Level Structures for Quantum Computing. Springer, Cham (2012). https://doi.org/10.1007/978-3-031-02516-7

  66. Morita, K.: Computation-universality of one-dimensional one-way reversible cellular automata. Inf. Process. Lett. 42(6), 325–329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  67. Morita, K.: Reversible computing and cellular automata–a survey. Theor. Comput. Sci. 395(1), 101–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Morita, K.: Theory of Reversible Computing. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Tokyo (2017). https://doi.org/10.1007/978-4-431-56606-9

  69. Morrison, D., Ulidowski, I.: Direction-reversible self-timed cellular automata for delay-insensitive circuits. J. Cell. Autom. 12(1–2), 101–120 (2016)

    MathSciNet  MATH  Google Scholar 

  70. Nakano, K.: Time-symmetric Turing machines for computable involutions. Sci. Comput. Program. 215, 102748 (2022)

    Article  Google Scholar 

  71. Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ architectures. Quantum Sci. Technol. 5(2), 025010 (2020)

    Article  Google Scholar 

  72. Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J. Log. Algebr. Methods Program. 94, 128–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Nishida, N., Vidal, G.: Characterizing compatible view updates in syntactic bidirectionalization. In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497, pp. 67–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2_5

    Chapter  Google Scholar 

  74. Ömer, B.: Structured Quantum Programming. Ph.D. thesis, Vienna University of Technology (2003)

    Google Scholar 

  75. Paolini, L., Piccolo, M., Roversi, L.: On a class of reversible primitive recursive functions and its Turing-complete extensions. New Gener. Comput. 36(3), 233–256 (2018)

    Article  MATH  Google Scholar 

  76. Perumalla, K.S.:Introduction to Reversible Computing. CRC Press/Taylor & Francis Group (2014)

    Google Scholar 

  77. Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_6

    Chapter  MATH  Google Scholar 

  78. Philippou, A., Psara, K.: A collective interpretation semantics for reversing Petri nets. Theor. Comput. Sci. 924, 148–170 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  79. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 303–318. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_22

    Chapter  Google Scholar 

  80. Phillips, I., Ulidowski, I.: Event identifier logic. Math. Struct. Comput. Sci. 24(2) (2014)

    Google Scholar 

  81. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. J. Log. Algebr. Methods Program. 84(6), 781–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  82. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signaling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18

    Chapter  MATH  Google Scholar 

  83. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007)

    Google Scholar 

  84. Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of reversible C++ code for optimistic parallel discrete event simulation. New Gener. Comput. 36(3), 257–280 (2018)

    Google Scholar 

  85. Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 153–159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_10

    Chapter  Google Scholar 

  86. Schultz, U.P., Bordignon, M., Støy, K.: Robust and reversible execution of self-reconfiguration sequences. Robotica 29(1), 35–57 (2011)

    Google Scholar 

  87. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427–1430 (2019)

    Article  Google Scholar 

  88. Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible functional language RFUN. In: IFL 2015, pp. 8:1–8:13. ACM (2015)

    Google Scholar 

  89. Thomsen, M.K., Axelsen, H.B., Glück, R.: A reversible processor architecture and its reversible logic design. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 30–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1_3

    Chapter  Google Scholar 

  90. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_104

    Chapter  Google Scholar 

  91. Toffoli, T., Margolus, N.: Cellular Automata Machines. A New Environment for Modeling. MIT Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  92. Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Gener. Comput. 36(3), 281–306 (2018)

    Article  Google Scholar 

  93. Undo, UDB - reverse debugger for C/C++ (2020). https://undo.io

  94. Vassor, M.: Reversibility and predictions. In: Yamashita, S., Yokoyama, T. (eds.) RC 2021. LNCS, vol. 12805, pp. 163–181. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79837-6_10

    Chapter  Google Scholar 

  95. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1_2

    Chapter  MATH  Google Scholar 

  96. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart languages. Theor. Comput. Sci. 611, 87–115 (2016)

    Google Scholar 

  97. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: PEPM 2007, pp. 144–153. ACM (2007)

    Google Scholar 

Download references

Acknowledgements

This work refines and extends the results of discussions that occurred during the meetings of the COST Action IC1405 on Reversible Computation – Extending Horizons of Computing. We thank all the participants to such discussions. The authors were partially supported by the COST Action IC1405. We thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Lanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glück, R. et al. (2023). Towards a Taxonomy for Reversible Computation Approaches. In: Kutrib, M., Meyer, U. (eds) Reversible Computation. RC 2023. Lecture Notes in Computer Science, vol 13960. Springer, Cham. https://doi.org/10.1007/978-3-031-38100-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38100-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38099-0

  • Online ISBN: 978-3-031-38100-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics