Abstract
Glaucoma is a disease that progressively affects the optic nerve, the leading cause of blindness worldwide. One of the most assertive strategies to make the diagnosis is Optical Coherence Tomography (OCT) which identifies anomalies in the anatomy of the optic nerve. OCT is a high-cost exam, so some works in the literature have been using computationally expensive deep neural networks to analyze images on retinal fundus images to diagnose glaucoma. As an alternative to these approaches, in this work, we propose a low-cost computational method for extracting characteristics of the optic nerve anatomy (i.e., optic cup and disc segmentation) through the processing of retinal fundus images, which is used in conjunction with lower computational cost classification algorithms (i.e., support vector machine (SVM)), is capable of performing accurate diagnoses. The most dominant attributes were identified using shapely adaptive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) analysis. More specifically, the more precise the extraction of features, the greater the accuracy of the classifier.
This work was partially funded by CNPq, CAPES and Fapemig.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)
Camara, J., Neto, A., Pires, I.M., Villasana, M.V., Zdravevski, E., Cunha, A.: Literature review on artificial intelligence methods for glaucoma screening, segmentation, and classification. J. Imaging 8(2), 19 (2022). https://doi.org/10.3390/jimaging8020019, https://www.mdpi.com/2313-433X/8/2/19
D’Angelo, G., Palmieri, F., Robustelli, A., Castiglione, A.: Effective classification of android malware families through dynamic features and neural networks. Connect. Sci. 33(3), 786–801 (2021). https://doi.org/10.1080/09540091.2021.1889977
D’Angelo, G., Rampone, S.: Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm. In: 2014 IEEE Metrology for Aerospace (MetroAeroSpace), pp. 408–412 (2014). https://doi.org/10.1109/MetroAeroSpace.2014.6865959
Deepika, E., Maheswari, S.: Earlier glaucoma detection using blood vessel segmentation and classification. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC), pp. 484–490 (2018). https://doi.org/10.1109/ICISC.2018.8399120
D’Angelo, G., Castiglione, A., Palmieri, F.: A cluster-based multidimensional approach for detecting attacks on connected vehicles. IEEE Internet Things J. 8(16), 12518–12527 (2021). https://doi.org/10.1109/JIOT.2020.3032935
Gopalakrishnan, A., Almazroa, A., Raahemifar, K., Lakshminarayanan, V.: Optic disc segmentation using circular Hough transform and curve fitting. In: 2015 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), pp. 1–4. IEEE (2015). https://doi.org/10.1109/OPTRONIX.2015.7345530
Hatanaka, Y., et al.: Automatic measurement of cup to disc ratio based on line profile analysis in retinal images. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3387–3390. IEEE (2011). https://doi.org/10.1109/IEMBS.2011.6090917
Hayashi, Y., et al.: Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering. In: Giger, M.L., Karssemeijer, N. (eds.) Medical Imaging 2007: Computer-Aided Diagnosis, vol. 6514, p. 65142Z. International Society for Optics and Photonics, SPIE (2007). https://doi.org/10.1117/12.710181
Kaggle Inc.: Glaucoma detection (2022). https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection
Krishnan, R., Sekhar, V., Sidharth, J., Gautham, S., Gopakumar, G.: Glaucoma detection from retinal fundus images. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 0628–0631. IEEE (2020). https://doi.org/10.1109/ICCSP48568.2020.9182388
Kumar, B.N., Chauhan, R.P., Dahiya, N.: Detection of glaucoma using image processing techniques: a review. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1–6. IEEE (2016). https://doi.org/10.1109/MicroCom.2016.7522515
Lin, K.C., Liu, T.Y., Chen, P.H., Lin, C.T.: Use support vector machine (SVM) to estimate gas concentration in mixture condition. In: 2017 International Conference on Applied System Innovation (ICASI), pp. 744–746. IEEE (2017). https://doi.org/10.1109/ICASI.2017.7988537
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Maadi, F., Faraji, N., Bibalan, M.H.: A robust glaucoma screening method for fundus images using deep learning technique. In: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), pp. 289–293. IEEE (2020). https://doi.org/10.1109/ICBME51989.2020.9319434
Naga Kiran, D., Kanchana, V.: Recognistion of Glaucoma using OTSU segmentation method (2019)
Nayak, J., Acharya, U.R., Bhat, P., Shetty, N., Lim, T.C.: Automated diagnosis of Glaucoma using digital fundus images. J. Med. Syst. 33, 337–46 (2009). https://doi.org/10.1007/s10916-008-9195-z
Pal, S., Chatterjee, S.: Mathematical morphology aided optic disk segmentation from retinal images. In: 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), pp. 380–385. IEEE (2017). https://doi.org/10.1109/CATCON.2017.8280249
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144 (2016)
Sarhan, M.H., et al.: Machine learning techniques for ophthalmic data processing: a review. IEEE J. Biomed. Health Inform. 24(12), 3338–3350 (2020). https://doi.org/10.1109/JBHI.2020.3012134
Stefan, A.M., Paraschiv, E.A., Ovreiu, S., Ovreiu, E.: A review of glaucoma detection from digital fundus images using machine learning techniques (2020). https://doi.org/10.1109/EHB50910.2020.9280218
Sushil, M., Gnanaprakasam, S., Rajan, L., Devi, N.: Performance comparison of pre-trained deep neural networks for automated glaucoma detection, January 2019. https://doi.org/10.1007/978-3-030-00665-5-62
Vessani, R.M.: Comparação entre diversas técnicas de imagem para diagnóstico do glaucoma, Faculdade de Medicina, Universidade de São Paulo (2008). https://doi.org/10.11606/T.5.2008.tde-02062008-112610
Van der Walt, S., et al.: Scikit-image: image processing in Python. PeerJ 2, e453 (2014)
Yin, P., et al.: Optic disc and cup segmentation using ensemble deep neural networks (2018)
Zhang, Z., et al.: ORIGA(-light): an online retinal fundus image database for glaucoma analysis and research. In: Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2010, p. 3065-8, August 2010. https://doi.org/10.1109/IEMBS.2010.5626137
Zhao, R., Chen, X., Liu, X., Chen, Z., Guo, F., Li, S.: Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning. IEEE J. Biomed. Health Inform. 24(4), 1104–1113 (2020). https://doi.org/10.1109/JBHI.2019.2934477
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oliveira, M. et al. (2023). Automatic Features Extraction from the Optic Cup and Disc Segmentation for Glaucoma Classification. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-36805-9_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36804-2
Online ISBN: 978-3-031-36805-9
eBook Packages: Computer ScienceComputer Science (R0)