iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-36805-9_36
Automatic Features Extraction from the Optic Cup and Disc Segmentation for Glaucoma Classification | SpringerLink
Skip to main content

Automatic Features Extraction from the Optic Cup and Disc Segmentation for Glaucoma Classification

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

Glaucoma is a disease that progressively affects the optic nerve, the leading cause of blindness worldwide. One of the most assertive strategies to make the diagnosis is Optical Coherence Tomography (OCT) which identifies anomalies in the anatomy of the optic nerve. OCT is a high-cost exam, so some works in the literature have been using computationally expensive deep neural networks to analyze images on retinal fundus images to diagnose glaucoma. As an alternative to these approaches, in this work, we propose a low-cost computational method for extracting characteristics of the optic nerve anatomy (i.e., optic cup and disc segmentation) through the processing of retinal fundus images, which is used in conjunction with lower computational cost classification algorithms (i.e., support vector machine (SVM)), is capable of performing accurate diagnoses. The most dominant attributes were identified using shapely adaptive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) analysis. More specifically, the more precise the extraction of features, the greater the accuracy of the classifier.

This work was partially funded by CNPq, CAPES and Fapemig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  2. Camara, J., Neto, A., Pires, I.M., Villasana, M.V., Zdravevski, E., Cunha, A.: Literature review on artificial intelligence methods for glaucoma screening, segmentation, and classification. J. Imaging 8(2), 19 (2022). https://doi.org/10.3390/jimaging8020019, https://www.mdpi.com/2313-433X/8/2/19

  3. D’Angelo, G., Palmieri, F., Robustelli, A., Castiglione, A.: Effective classification of android malware families through dynamic features and neural networks. Connect. Sci. 33(3), 786–801 (2021). https://doi.org/10.1080/09540091.2021.1889977

    Article  Google Scholar 

  4. D’Angelo, G., Rampone, S.: Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm. In: 2014 IEEE Metrology for Aerospace (MetroAeroSpace), pp. 408–412 (2014). https://doi.org/10.1109/MetroAeroSpace.2014.6865959

  5. Deepika, E., Maheswari, S.: Earlier glaucoma detection using blood vessel segmentation and classification. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC), pp. 484–490 (2018). https://doi.org/10.1109/ICISC.2018.8399120

  6. D’Angelo, G., Castiglione, A., Palmieri, F.: A cluster-based multidimensional approach for detecting attacks on connected vehicles. IEEE Internet Things J. 8(16), 12518–12527 (2021). https://doi.org/10.1109/JIOT.2020.3032935

    Article  Google Scholar 

  7. Gopalakrishnan, A., Almazroa, A., Raahemifar, K., Lakshminarayanan, V.: Optic disc segmentation using circular Hough transform and curve fitting. In: 2015 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), pp. 1–4. IEEE (2015). https://doi.org/10.1109/OPTRONIX.2015.7345530

  8. Hatanaka, Y., et al.: Automatic measurement of cup to disc ratio based on line profile analysis in retinal images. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3387–3390. IEEE (2011). https://doi.org/10.1109/IEMBS.2011.6090917

  9. Hayashi, Y., et al.: Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering. In: Giger, M.L., Karssemeijer, N. (eds.) Medical Imaging 2007: Computer-Aided Diagnosis, vol. 6514, p. 65142Z. International Society for Optics and Photonics, SPIE (2007). https://doi.org/10.1117/12.710181

  10. Kaggle Inc.: Glaucoma detection (2022). https://www.kaggle.com/datasets/sshikamaru/glaucoma-detection

  11. Krishnan, R., Sekhar, V., Sidharth, J., Gautham, S., Gopakumar, G.: Glaucoma detection from retinal fundus images. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 0628–0631. IEEE (2020). https://doi.org/10.1109/ICCSP48568.2020.9182388

  12. Kumar, B.N., Chauhan, R.P., Dahiya, N.: Detection of glaucoma using image processing techniques: a review. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1–6. IEEE (2016). https://doi.org/10.1109/MicroCom.2016.7522515

  13. Lin, K.C., Liu, T.Y., Chen, P.H., Lin, C.T.: Use support vector machine (SVM) to estimate gas concentration in mixture condition. In: 2017 International Conference on Applied System Innovation (ICASI), pp. 744–746. IEEE (2017). https://doi.org/10.1109/ICASI.2017.7988537

  14. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  15. Maadi, F., Faraji, N., Bibalan, M.H.: A robust glaucoma screening method for fundus images using deep learning technique. In: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), pp. 289–293. IEEE (2020). https://doi.org/10.1109/ICBME51989.2020.9319434

  16. Naga Kiran, D., Kanchana, V.: Recognistion of Glaucoma using OTSU segmentation method (2019)

    Google Scholar 

  17. Nayak, J., Acharya, U.R., Bhat, P., Shetty, N., Lim, T.C.: Automated diagnosis of Glaucoma using digital fundus images. J. Med. Syst. 33, 337–46 (2009). https://doi.org/10.1007/s10916-008-9195-z

  18. Pal, S., Chatterjee, S.: Mathematical morphology aided optic disk segmentation from retinal images. In: 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), pp. 380–385. IEEE (2017). https://doi.org/10.1109/CATCON.2017.8280249

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144 (2016)

    Google Scholar 

  20. Sarhan, M.H., et al.: Machine learning techniques for ophthalmic data processing: a review. IEEE J. Biomed. Health Inform. 24(12), 3338–3350 (2020). https://doi.org/10.1109/JBHI.2020.3012134

    Article  Google Scholar 

  21. Stefan, A.M., Paraschiv, E.A., Ovreiu, S., Ovreiu, E.: A review of glaucoma detection from digital fundus images using machine learning techniques (2020). https://doi.org/10.1109/EHB50910.2020.9280218

  22. Sushil, M., Gnanaprakasam, S., Rajan, L., Devi, N.: Performance comparison of pre-trained deep neural networks for automated glaucoma detection, January 2019. https://doi.org/10.1007/978-3-030-00665-5-62

  23. Vessani, R.M.: Comparação entre diversas técnicas de imagem para diagnóstico do glaucoma, Faculdade de Medicina, Universidade de São Paulo (2008). https://doi.org/10.11606/T.5.2008.tde-02062008-112610

  24. Van der Walt, S., et al.: Scikit-image: image processing in Python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  25. Yin, P., et al.: Optic disc and cup segmentation using ensemble deep neural networks (2018)

    Google Scholar 

  26. Zhang, Z., et al.: ORIGA(-light): an online retinal fundus image database for glaucoma analysis and research. In: Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2010, p. 3065-8, August 2010. https://doi.org/10.1109/IEMBS.2010.5626137

  27. Zhao, R., Chen, X., Liu, X., Chen, Z., Guo, F., Li, S.: Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning. IEEE J. Biomed. Health Inform. 24(4), 1104–1113 (2020). https://doi.org/10.1109/JBHI.2019.2934477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, M. et al. (2023). Automatic Features Extraction from the Optic Cup and Disc Segmentation for Glaucoma Classification. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics