iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-36011-4_9
Landslide Detection of 6G Satellite Images Using Multi-level Transformer Network | SpringerLink
Skip to main content

Landslide Detection of 6G Satellite Images Using Multi-level Transformer Network

  • Conference paper
  • First Online:
6GN for Future Wireless Networks (6GN 2022)

Abstract

The 6G satellite system can help humans detect natural disasters and respond quickly through a low-altitude full-coverage network. Analyzing and identifying landslide images captured by satellites can help humans address the various hazards posed by landslides. Recently, deep learning models have been developed rapidly and demonstrated the effectiveness of landslide detection. Many models use convolutional neural networks (CNN) to extract the features of landslide images for landslide detection. However, CNN-based models cannot obtain global semantic information of images, resulting in low accuracy of landslide detection or some misjudgments. In this paper, we adopt a pre-training feature extraction network and an unsupervised multi-level transformer autoencoder for landslide detection. We first extract multi-scale features from the pre-training network, then reconstruct the image features using an autoencoder transformer network with a U-Net shape, which can better get global semantic information. We use the Bijie landslide dataset captured by satellites for experiments. The experimental results show that, compared with the original CNN model, our method can improve the detection accuracy and effectively distinguish landslide and non-landslide image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, W., et al.: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology 297, 69–85 (2017)

    Article  Google Scholar 

  2. Cullen, C.A., Al-Suhili, R., Khanbilvardi, R.: Guidance index for shallow landslide hazard analysis. Remote Sens. 8, 866 (2016)

    Google Scholar 

  3. Liu, Y., Gross, L., Li, Z., Li, X., Fan, X., Qi, W.: Automatic building extraction on high-resolution remote sensing imagery using deep convolutional encoder-decoder with spatial pyramid pooling. IEEE Access 7, 128774–128786 (2019)

    Article  Google Scholar 

  4. Liu, Y., Li, Z., Wei, B., Li, X., Fu, B.: Seismic vulnerability assessment at urban scale using data mining and GIScience technology: application to Urumqi (China). Geomat. Nat. Haz. Risk 10(1), 958–985 (2019)

    Article  Google Scholar 

  5. Martha, T.R., Kerle, N., Jetten, V., van Westen, C.J., Kumar, K.V.: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116(1–2), 24–36 (2010)

    Article  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  7. Pradhan, B., Seeni, M.I., Nampak, H.: Integration of LiDAR and QuickBird data for automatic landslide detection using object-based analysis and random forests. In: Pradhan, B. (ed.) Laser Scanning Applications in Landslide Assessment, pp. 69–81. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-55342-9_4

  8. Dou, J., et al.: Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm. Remote Sens. 7(4), 4318–4342 (2015)

    Article  MathSciNet  Google Scholar 

  9. Huang, G., Liu, Z., Pleiss, G., et al.: Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  10. Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., Aryal, J.: Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 11(2), 196 (2019)

    Article  Google Scholar 

  11. Ji, S., Yu, D., Shen, C., et al.: Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 17(6), 1337–1352 (2020)

    Article  Google Scholar 

  12. Raghu, M., Unterthiner, T., Kornblith, S., et al.: Do vision transformers see like convolutional neural networks? Adv. Neural. Inf. Process. Syst. 34, 12116–12128 (2021)

    Google Scholar 

  13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  14. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, p. 30 (2017)

    Google Scholar 

  15. Yuan, L., Hou, Q., Jiang, Z., et al.: Volo: vision outlooker for visual recognition. arXiv preprint arXiv:2106.13112 (2021)

  16. Wang, W., Xie, E., Li, X., et al.: Pvt v2: improved baselines with pyramid vision transformer. Comput. Vis. Media 8(3), 415–424 (2022)

    Article  Google Scholar 

  17. Lee, Y., Kang, P.: AnoViT: unsupervised anomaly detection and localization with vision transformer-based encoder-decoder. IEEE Access 10, 46717–46724 (2022)

    Article  Google Scholar 

  18. Botta, A., Pescapé, A.: On the performance of new generation satellite broadband internet services. IEEE Commun. Mag. 52(6), 202–209 (2014)

    Article  Google Scholar 

  19. Chini, P., Giambene, G., Kota, S.: A survey on mobile satellite systems. Int. J. Satell. Commun. Network. 28(1), 29–57 (2010)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Heilongjiang Province Natural Science Foundation under Grant LH2022F034.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xi or Lu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, D., Xi, L., Liu, L. (2023). Landslide Detection of 6G Satellite Images Using Multi-level Transformer Network. In: Li, A., Shi, Y., Xi, L. (eds) 6GN for Future Wireless Networks. 6GN 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 504. Springer, Cham. https://doi.org/10.1007/978-3-031-36011-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36011-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36010-7

  • Online ISBN: 978-3-031-36011-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics