Abstract
Argument Generation (AG) is becoming an increasingly active research topic in Natural Language Processing (NLP), and a large variety of terms has been used to highlight different aspects and methods of AG such as argument construction, argument retrieval, argument synthesis and argument summarization, producing a vast literature. This article aims to draw a comprehensive picture of the literature concerning argument generation and counter-argument generation (CAG). Despite the increasing interest on this topic, no attempt has been made yet to critically review the diverse and rich literature in AG and CAG. By confronting works from the relevant subareas of NLP, we provide a holistic vision that is essential for future works aiming to produce understandable, convincing and ethically sound arguments and counter-arguments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alshomary, M., Chen, W.F., Gurcke, T., Wachsmuth, H.: Belief-based generation of argumentative claims. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (2021)
Alshomary, M., Düsterhus, N., Wachsmuth, H.: Extractive snippet generation for arguments. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1969–1972. ACM, Virtual Event China (2020)
Alshomary, M., Rieskamp, J., Wachsmuth, H.: Generating contrastive snippets for argument search. In: Toni, F., Polberg, S., Booth, R., Caminada, M., Kido, H. (eds.) Frontiers in Artificial Intelligence and Applications. IOS Press (2022)
Alshomary, M., Syed, S., Dhar, A., Potthast, M., Wachsmuth, H.: Counter-argument generation by attacking weak premises. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1816–1827. Association for Computational Linguistics (2021)
Alshomary, M., Syed, S., Potthast, M., Wachsmuth, H.: Target inference in argument conclusion generation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4334–4345. Association for Computational Linguistics (2020)
Ashley, K.D., Walker, V.R.: Toward constructing evidence-based legal arguments using legal decision documents and machine learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, pp. 176–180 (2013)
Bar-Haim, R., Bhattacharya, I., Dinuzzo, F., Saha, A., Slonim, N.: Stance classification of context-dependent claims. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 251–261 (2017)
Bhagavatula, C., et al.: Abductive commonsense reasoning. arXiv preprint arXiv:1908.05739 (2019)
Bilu, Y., Hershcovich, D., Slonim, N.: Automatic claim negation: why, how and when. In: Proceedings of the 2nd Workshop on Argumentation Mining, pp. 84–93. Association for Computational Linguistics, Denver (2015)
Bilu, Y., Slonim, N.: Claim synthesis via predicate recycling. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 525–530 (2016)
Boltužić, F., Šnajder, J.: Fill the gap! Analyzing implicit premises between claims from online debates. In: Proceedings of the Third Workshop on Argument Mining (ArgMining2016), pp. 124–133 (2016)
Bose, T., Reina, A., Marshall, J.A.: Collective decision-making. Curr. Opin. Behav. Sci. 16, 30–34 (2017)
Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 5427–5433. International Joint Conferences on Artificial Intelligence Organization, Stockholm (2018)
Carenini, G.: GEA: a complete, modular system for generating evaluative arguments. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 959–968. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0_108
Chakrabarty, T., Trivedi, A., Muresan, S.: Implicit premise generation with discourse-aware commonsense knowledge models (2021)
Chen, W.F., Wachsmuth, H., Al-Khatib, K., Stein, B.: Learning to flip the bias of news headlines. In: Proceedings of the 11th International Conference on Natural Language Generation, pp. 79–88. Association for Computational Linguistics, Tilburg University, The Netherlands (2018)
Cherumanal, S.P., Spina, D., Scholer, F., Croft, W.B.: Evaluating Fairness in Argument Retrieval. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3363–3367 (2021)
El Baff, R., Wachsmuth, H., Al Khatib, K., Stede, M., Stein, B.: Computational argumentation synthesis as a language modeling task. In: Proceedings of the 12th International Conference on Natural Language Generation, pp. 54–64 (2019)
Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004)
Farag, Y., et al.: Opening up minds with argumentative dialogues. In: Findings of EMNLP (Empirical Methods in Natural Language Processing) (2022). In-Press
Gretz, S., Bilu, Y., Cohen-Karlik, E., Slonim, N.: The workweek is the best time to start a family–a study of GPT-2 based claim generation. arXiv preprint arXiv:2010.06185 (2020)
Gretz, S., et al.: A large-scale dataset for argument quality ranking: Construction and analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7805–7813 (2020)
Habernal, I., Wachsmuth, H., Gurevych, I., Stein, B.: The argument reasoning comprehension task: Identification and reconstruction of implicit warrants. arXiv preprint arXiv:1708.01425 (2017)
Hidey, C., McKeown, K.: Fixed that for you: generating contrastive claims with semantic edits. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1756–1767. Association for Computational Linguistics, Minneapolis (2019)
Hua, X., Hu, Z., Wang, L.: Argument generation with retrieval, planning, and realization. arXiv preprint arXiv:1906.03717 (2019)
Hua, X., Wang, L.: Neural argument generation augmented with externally retrieved evidence (2018)
Hua, X., Wang, L.: Sentence-level content planning and style specification for neural text generation (2019)
Jo, Y., Bang, S., Manzoor, E., Hovy, E., Reed, C.: Detecting attackable sentences in arguments. arXiv preprint arXiv:2010.02660 (2020)
Lauscher, A., Wachsmuth, H., Gurevych, I., Glavaš, G.: Scientia potentia Est—on the role of knowledge in computational argumentation. Trans. Assoc. Comput. Linguist. 10, 1392–1422 (2022)
Lawrence, J., Reed, C.: Argument mining: a survey. Comput. Linguist. 45(4), 765–818 (2020)
Le, D.T., Nguyen, C.T., Nguyen, K.A.: Dave the debater: a retrieval-based and generative argumentative dialogue agent. In: Proceedings of the 5th Workshop on Argument Mining, pp. 121–130. Association for Computational Linguistics, Brussels (2018)
Levy, R., Bilu, Y., Hershcovich, D., Aharoni, E., Slonim, N.: Context dependent claim detection. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 1489–1500. Dublin City University and Association for Computational Linguistics, Dublin (2014)
Lipton, P.: Inference to the best explanation. A Companion to the Philosophy of Science, pp. 184–193 (2017)
Marro, S., Cabrio, E., Villata, S.: Graph embeddings for argumentation quality assessment. In: EMNLP 2022-Conference on Empirical Methods in Natural Language Processing (2022)
Pasumarthi, R.K., et al.: TF-ranking: scalable tensorflow library for learning-to-rank. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2970–2978 (2019)
Prakken, H.: A persuasive chatbot using a crowd-sourced argument graph and concerns. Comput. Models Argument 326, 9 (2020)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training, p. 12 (2018)
Rinott, R., Dankin, L., Alzate, C., Khapra, M.M., Aharoni, E., Slonim, N.: Show me your evidence-an automatic method for context dependent evidence detection. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 440–450 (2015)
Sathe, A., Ather, S., Le, T.M., Perry, N., Park, J.: Automated fact-checking of claims from Wikipedia. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 6874–6882. European Language Resources Association, Marseille (2020)
Sato, M., et al.: End-to-end argument generation system in debating. In: Proceedings of ACL-IJCNLP 2015 System Demonstrations, pp. 109–114. Association for Computational Linguistics and The Asian Federation of Natural Language Processing, Beijing (2015)
Saveleva, E., Petukhova, V., Mosbach, M., Klakow, D.: Graph-based argument quality assessment. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pp. 1268–1280 (2021)
Stab, C., Gurevych, I.: Recognizing insufficiently supported arguments in argumentative essays. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 980–990 (2017)
Tekiroglu, S.S., Chung, Y.L., Guerini, M.: Generating counter narratives against online hate speech: data and strategies. arXiv preprint arXiv:2004.04216 (2020)
Wachsmuth, H., et al.: Computational argumentation quality assessment in natural language. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 176–187. Association for Computational Linguistics, Valencia (2017)
Wachsmuth, H., Stede, M., El Baff, R., Al Khatib, K., Skeppstedt, M., Stein, B.: Argumentation synthesis following rhetorical strategies. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3753–3765 (2018)
Wachsmuth, H., Syed, S., Stein, B.: Retrieval of the best counterargument without prior topic knowledge. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 241–251. Association for Computational Linguistics, Melbourne (2018)
Wang, L., Ling, W.: Neural network-based abstract generation for opinions and arguments. arXiv preprint arXiv:1606.02785 (2016)
Woods, B., Adamson, D., Miel, S., Mayfield, E.: Formative essay feedback using predictive scoring models. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2071–2080. ACM, Halifax (2017)
Zukerman, I., McConachy, R., George, S.: Using argumentation strategies in automated argument generation. In: INLG 2000 Proceedings of the First International Conference on Natural Language Generation, pp. 55–62 (2000)
Acknowledgements
This work has been partially supported by the ANR project ATTENTION (ANR21-CE23-0037) and the French government through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, X., Cabrio, E., Villata, S. (2023). Argument and Counter-Argument Generation: A Critical Survey. In: Métais, E., Meziane, F., Sugumaran, V., Manning, W., Reiff-Marganiec, S. (eds) Natural Language Processing and Information Systems. NLDB 2023. Lecture Notes in Computer Science, vol 13913. Springer, Cham. https://doi.org/10.1007/978-3-031-35320-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-35320-8_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35319-2
Online ISBN: 978-3-031-35320-8
eBook Packages: Computer ScienceComputer Science (R0)