iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-35320-8_37
Argument and Counter-Argument Generation: A Critical Survey | SpringerLink
Skip to main content

Argument and Counter-Argument Generation: A Critical Survey

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13913))

  • 1514 Accesses

Abstract

Argument Generation (AG) is becoming an increasingly active research topic in Natural Language Processing (NLP), and a large variety of terms has been used to highlight different aspects and methods of AG such as argument construction, argument retrieval, argument synthesis and argument summarization, producing a vast literature. This article aims to draw a comprehensive picture of the literature concerning argument generation and counter-argument generation (CAG). Despite the increasing interest on this topic, no attempt has been made yet to critically review the diverse and rich literature in AG and CAG. By confronting works from the relevant subareas of NLP, we provide a holistic vision that is essential for future works aiming to produce understandable, convincing and ethically sound arguments and counter-arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.research.ibm.com/artificial-intelligence/project-debater/.

References

  1. Alshomary, M., Chen, W.F., Gurcke, T., Wachsmuth, H.: Belief-based generation of argumentative claims. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (2021)

    Google Scholar 

  2. Alshomary, M., Düsterhus, N., Wachsmuth, H.: Extractive snippet generation for arguments. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1969–1972. ACM, Virtual Event China (2020)

    Google Scholar 

  3. Alshomary, M., Rieskamp, J., Wachsmuth, H.: Generating contrastive snippets for argument search. In: Toni, F., Polberg, S., Booth, R., Caminada, M., Kido, H. (eds.) Frontiers in Artificial Intelligence and Applications. IOS Press (2022)

    Google Scholar 

  4. Alshomary, M., Syed, S., Dhar, A., Potthast, M., Wachsmuth, H.: Counter-argument generation by attacking weak premises. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1816–1827. Association for Computational Linguistics (2021)

    Google Scholar 

  5. Alshomary, M., Syed, S., Potthast, M., Wachsmuth, H.: Target inference in argument conclusion generation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4334–4345. Association for Computational Linguistics (2020)

    Google Scholar 

  6. Ashley, K.D., Walker, V.R.: Toward constructing evidence-based legal arguments using legal decision documents and machine learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, pp. 176–180 (2013)

    Google Scholar 

  7. Bar-Haim, R., Bhattacharya, I., Dinuzzo, F., Saha, A., Slonim, N.: Stance classification of context-dependent claims. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 251–261 (2017)

    Google Scholar 

  8. Bhagavatula, C., et al.: Abductive commonsense reasoning. arXiv preprint arXiv:1908.05739 (2019)

  9. Bilu, Y., Hershcovich, D., Slonim, N.: Automatic claim negation: why, how and when. In: Proceedings of the 2nd Workshop on Argumentation Mining, pp. 84–93. Association for Computational Linguistics, Denver (2015)

    Google Scholar 

  10. Bilu, Y., Slonim, N.: Claim synthesis via predicate recycling. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 525–530 (2016)

    Google Scholar 

  11. Boltužić, F., Šnajder, J.: Fill the gap! Analyzing implicit premises between claims from online debates. In: Proceedings of the Third Workshop on Argument Mining (ArgMining2016), pp. 124–133 (2016)

    Google Scholar 

  12. Bose, T., Reina, A., Marshall, J.A.: Collective decision-making. Curr. Opin. Behav. Sci. 16, 30–34 (2017)

    Article  Google Scholar 

  13. Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 5427–5433. International Joint Conferences on Artificial Intelligence Organization, Stockholm (2018)

    Google Scholar 

  14. Carenini, G.: GEA: a complete, modular system for generating evaluative arguments. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 959–968. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0_108

    Chapter  Google Scholar 

  15. Chakrabarty, T., Trivedi, A., Muresan, S.: Implicit premise generation with discourse-aware commonsense knowledge models (2021)

    Google Scholar 

  16. Chen, W.F., Wachsmuth, H., Al-Khatib, K., Stein, B.: Learning to flip the bias of news headlines. In: Proceedings of the 11th International Conference on Natural Language Generation, pp. 79–88. Association for Computational Linguistics, Tilburg University, The Netherlands (2018)

    Google Scholar 

  17. Cherumanal, S.P., Spina, D., Scholer, F., Croft, W.B.: Evaluating Fairness in Argument Retrieval. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3363–3367 (2021)

    Google Scholar 

  18. El Baff, R., Wachsmuth, H., Al Khatib, K., Stede, M., Stein, B.: Computational argumentation synthesis as a language modeling task. In: Proceedings of the 12th International Conference on Natural Language Generation, pp. 54–64 (2019)

    Google Scholar 

  19. Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

    Article  Google Scholar 

  20. Farag, Y., et al.: Opening up minds with argumentative dialogues. In: Findings of EMNLP (Empirical Methods in Natural Language Processing) (2022). In-Press

    Google Scholar 

  21. Gretz, S., Bilu, Y., Cohen-Karlik, E., Slonim, N.: The workweek is the best time to start a family–a study of GPT-2 based claim generation. arXiv preprint arXiv:2010.06185 (2020)

  22. Gretz, S., et al.: A large-scale dataset for argument quality ranking: Construction and analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7805–7813 (2020)

    Google Scholar 

  23. Habernal, I., Wachsmuth, H., Gurevych, I., Stein, B.: The argument reasoning comprehension task: Identification and reconstruction of implicit warrants. arXiv preprint arXiv:1708.01425 (2017)

  24. Hidey, C., McKeown, K.: Fixed that for you: generating contrastive claims with semantic edits. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1756–1767. Association for Computational Linguistics, Minneapolis (2019)

    Google Scholar 

  25. Hua, X., Hu, Z., Wang, L.: Argument generation with retrieval, planning, and realization. arXiv preprint arXiv:1906.03717 (2019)

  26. Hua, X., Wang, L.: Neural argument generation augmented with externally retrieved evidence (2018)

    Google Scholar 

  27. Hua, X., Wang, L.: Sentence-level content planning and style specification for neural text generation (2019)

    Google Scholar 

  28. Jo, Y., Bang, S., Manzoor, E., Hovy, E., Reed, C.: Detecting attackable sentences in arguments. arXiv preprint arXiv:2010.02660 (2020)

  29. Lauscher, A., Wachsmuth, H., Gurevych, I., Glavaš, G.: Scientia potentia Est—on the role of knowledge in computational argumentation. Trans. Assoc. Comput. Linguist. 10, 1392–1422 (2022)

    Article  Google Scholar 

  30. Lawrence, J., Reed, C.: Argument mining: a survey. Comput. Linguist. 45(4), 765–818 (2020)

    Article  Google Scholar 

  31. Le, D.T., Nguyen, C.T., Nguyen, K.A.: Dave the debater: a retrieval-based and generative argumentative dialogue agent. In: Proceedings of the 5th Workshop on Argument Mining, pp. 121–130. Association for Computational Linguistics, Brussels (2018)

    Google Scholar 

  32. Levy, R., Bilu, Y., Hershcovich, D., Aharoni, E., Slonim, N.: Context dependent claim detection. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 1489–1500. Dublin City University and Association for Computational Linguistics, Dublin (2014)

    Google Scholar 

  33. Lipton, P.: Inference to the best explanation. A Companion to the Philosophy of Science, pp. 184–193 (2017)

    Google Scholar 

  34. Marro, S., Cabrio, E., Villata, S.: Graph embeddings for argumentation quality assessment. In: EMNLP 2022-Conference on Empirical Methods in Natural Language Processing (2022)

    Google Scholar 

  35. Pasumarthi, R.K., et al.: TF-ranking: scalable tensorflow library for learning-to-rank. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2970–2978 (2019)

    Google Scholar 

  36. Prakken, H.: A persuasive chatbot using a crowd-sourced argument graph and concerns. Comput. Models Argument 326, 9 (2020)

    Google Scholar 

  37. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training, p. 12 (2018)

    Google Scholar 

  38. Rinott, R., Dankin, L., Alzate, C., Khapra, M.M., Aharoni, E., Slonim, N.: Show me your evidence-an automatic method for context dependent evidence detection. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 440–450 (2015)

    Google Scholar 

  39. Sathe, A., Ather, S., Le, T.M., Perry, N., Park, J.: Automated fact-checking of claims from Wikipedia. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 6874–6882. European Language Resources Association, Marseille (2020)

    Google Scholar 

  40. Sato, M., et al.: End-to-end argument generation system in debating. In: Proceedings of ACL-IJCNLP 2015 System Demonstrations, pp. 109–114. Association for Computational Linguistics and The Asian Federation of Natural Language Processing, Beijing (2015)

    Google Scholar 

  41. Saveleva, E., Petukhova, V., Mosbach, M., Klakow, D.: Graph-based argument quality assessment. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pp. 1268–1280 (2021)

    Google Scholar 

  42. Stab, C., Gurevych, I.: Recognizing insufficiently supported arguments in argumentative essays. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 980–990 (2017)

    Google Scholar 

  43. Tekiroglu, S.S., Chung, Y.L., Guerini, M.: Generating counter narratives against online hate speech: data and strategies. arXiv preprint arXiv:2004.04216 (2020)

  44. Wachsmuth, H., et al.: Computational argumentation quality assessment in natural language. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 176–187. Association for Computational Linguistics, Valencia (2017)

    Google Scholar 

  45. Wachsmuth, H., Stede, M., El Baff, R., Al Khatib, K., Skeppstedt, M., Stein, B.: Argumentation synthesis following rhetorical strategies. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3753–3765 (2018)

    Google Scholar 

  46. Wachsmuth, H., Syed, S., Stein, B.: Retrieval of the best counterargument without prior topic knowledge. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 241–251. Association for Computational Linguistics, Melbourne (2018)

    Google Scholar 

  47. Wang, L., Ling, W.: Neural network-based abstract generation for opinions and arguments. arXiv preprint arXiv:1606.02785 (2016)

  48. Woods, B., Adamson, D., Miel, S., Mayfield, E.: Formative essay feedback using predictive scoring models. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2071–2080. ACM, Halifax (2017)

    Google Scholar 

  49. Zukerman, I., McConachy, R., George, S.: Using argumentation strategies in automated argument generation. In: INLG 2000 Proceedings of the First International Conference on Natural Language Generation, pp. 55–62 (2000)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the ANR project ATTENTION (ANR21-CE23-0037) and the French government through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoou Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Cabrio, E., Villata, S. (2023). Argument and Counter-Argument Generation: A Critical Survey. In: Métais, E., Meziane, F., Sugumaran, V., Manning, W., Reiff-Marganiec, S. (eds) Natural Language Processing and Information Systems. NLDB 2023. Lecture Notes in Computer Science, vol 13913. Springer, Cham. https://doi.org/10.1007/978-3-031-35320-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35320-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35319-2

  • Online ISBN: 978-3-031-35320-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics