Abstract
Diabetic retinopathy (DR) is a common ocular disease in diabetic patients. In DR analysis, doctors first need to select excellent-quality images of ultra wide optical coherence tomography imaging (UW-OCTA). Only high-quality images can be used for lesion segmentation and proliferative diabetic retinopathy (PDR) detection. In practical applications, UW-OCTA has a small number of images with poor quality, so the dataset constructed from UW-OCTA faces the problem of class-imbalance. In this work, we employ data enhancement strategy and develop a loss function to alleviate class-imbalance. Specifically, we apply Fourier Transformation to the poor quality data with limited numbers, thus expanding this category data. We also utilize characteristics of class-imbalance to improve the cross-entropy loss by weighting. This method is evaluated on DRAC2022 dataset, we achieved Quaratic Weight Kappa of 0.7647 and AUC of 0.8458, respectively.
Z. Wu and Y. Chen—The two authors have equal contributions to the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Russell, J.F., et al.: Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol. Retina 3(4), 350–361 (2019)
Zhang, Q., Rezaei, K.A., Saraf, S.S., Chu, Z., Wang, F., Wang, R.K.: Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant. Imaging Med. Surg. 8(8), 743 (2018)
Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6
Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)
Liu, R., et al.: DeepDRiD: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6), 100512 (2022)
Sheng, B., et al.: An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front. Public Health 10, 971943 (2022)
Saha, S.K., Fernando, B., Cuadros, J., Xiao, D., Kanagasingam, Y.: Automated quality assessment of colour fundus images for diabetic retinopathy screening in telemedicine. J. Digit. Imaging 31(6), 869–878 (2018). https://doi.org/10.1007/s10278-018-0084-9
Niemeijer, M., Abramoff, M.D., van Ginneken, B.: Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med. Image Anal. 10(6), 888–898 (2006)
Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)
Alejo, R., Sotoca, J.M., Valdovinos, R.M., Toribio, P.: Edited nearest neighbor rule for improving neural networks classifications. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6063, pp. 303–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13278-0_39
Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE-IPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291, 184–203 (2015)
Lin, W.-C., Tsai, C.-F., Ya-Han, H., Jhang, J.-S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409, 17–26 (2017)
Tsai, C.-F., Lin, W.-C., Ya-Han, H., Yao, G.-T.: Under-sampling class imbalanced datasets by combining clustering analysis and instance selection. Inf. Sci. 477, 47–54 (2019)
Yao, H., Hu, X., Li, X.: Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation. arXiv preprint arXiv:2201.08657 (2022)
Yu, F.L., Sun, J., Li, A., Cheng, J., Wan, C., Liu, J.: Image quality classification for DR screening using deep learning. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 664–667. IEEE (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Acknowledgements
Research supported by National Natural Science Foundation of China (62271149) and Fujian Provincial Natural Science Foundation project (2021J02019).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Z., Chen, Y., Zhang, X., Huang, L. (2023). Data Augmentation by Fourier Transformation for Class-Imbalance: Application to Medical Image Quality Assessment. In: Sheng, B., Aubreville, M. (eds) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. Lecture Notes in Computer Science, vol 13597. Springer, Cham. https://doi.org/10.1007/978-3-031-33658-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-33658-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33657-7
Online ISBN: 978-3-031-33658-4
eBook Packages: Computer ScienceComputer Science (R0)