iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-32296-9_9
Topological Analysis of Temporal Hypergraphs | SpringerLink
Skip to main content

Topological Analysis of Temporal Hypergraphs

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13894))

Included in the following conference series:

  • 569 Accesses

Abstract

In this work we study the topological properties of temporal hypergraphs. Hypergraphs provide a higher dimensional generalization of a graph that is capable of capturing multi-way connections. As such, they have become an integral part of network science. A common use of hypergraphs is to model events as hyperedges in which the event can involve many elements as nodes. This provides a more complete picture of the event, which is not limited by the standard dyadic connections of a graph. However, a common attribution to events is temporal information as an interval for when the event occurred. Consequently, a temporal hypergraph is born, which accurately captures both the temporal information of events and their multi-way connections. Common tools for studying these temporal hypergraphs typically capture changes in the underlying dynamics with summary statistics of snapshots sampled in a sliding window procedure. However, these tools do not characterize the evolution of hypergraph structure over time, nor do they provide insight on persistent components which are influential to the underlying system. To alleviate this need, we leverage zigzag persistence from the field of Topological Data Analysis (TDA) to study the change in topological structure of time-evolving hypergraphs. We apply our pipeline to both a cyber security and social network dataset and show how the topological structure of their temporal hypergraphs change and can be used to understand the underlying dynamics.

Information release number: PNNL-SA-181478.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice we use “topology” here in the formal sense, as distinct from how this is used informally in graph applications to refer to connectivity patterns in networks.

  2. 2.

    HyperNetX: https://pnnl.github.io/HyperNetX.

  3. 3.

    Dionysus2: https://mrzv.org/software/dionysus2/.

References

  1. Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017). http://jmlr.org/papers/v18/16-337.html

  2. Agency, D.A.R.P.: Operationally transparent cyber (OpTC) data release (2020)

    Google Scholar 

  3. Aktas, M.E., Akbas, E., Fatmaoui, A.E.: Persistence homology of networks: methods and applications. Appl. Netw. Sci. 4(1), 1–28 (2019). https://doi.org/10.1007/s41109-019-0179-3

    Article  Google Scholar 

  4. Amézquita, E.J., Quigley, M.Y., Ophelders, T., Munch, E., Chitwood, D.H.: The shape of things to come: topological data analysis and biology, from molecules to organisms. Dev. Dyn. 249(7), 816–833 (2020). https://doi.org/10.1002/dvdy.175

    Article  Google Scholar 

  5. Baumgartner, J., Zannettou, S., Keegan, B., Squire, M., Blackburn, J.: The pushshift reddit dataset. PUSHSHIFT (2020). https://doi.org/10.5281/zenodo.3608135. Reddit-hazelnut prepared for the Social Network ProblemShop (Jan 24-Feb 4, 2022). Ottawa, Canada. Derivative of Reddit data obtained via pushshift.io API for the period January 1, 2019 to February 28

  6. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(3), 77–102 (2015). http://jmlr.org/papers/v16/bubenik15a.html

  7. Carlsson, G., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010). https://doi.org/10.1007/s10208-010-9066-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Cencetti, G., Battiston, F., Lepri, B., Karsai, M.: Temporal properties of higher-order interactions in social networks. Sci. Rep. 11(1) (2021). https://doi.org/10.1038/s41598-021-86469-8

  9. David Boyce, B.R.: Modeling Dynamic Transportation Networks. Springer, Berlin Heidelberg (2012)

    MATH  Google Scholar 

  10. Edelsbrunner, L.: Zomorodian: topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality and clustering in complex hyper-networks. Phys. A: Stat. Mech. Appl. 364, 581–594 (2006). https://doi.org/10.1016/j.physa.2005.12.002

    Article  MathSciNet  Google Scholar 

  12. Feng, S., et al.: Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinf. 22(1), 1–21 (2021). https://doi.org/10.1186/s12859-021-04197-2

    Article  MathSciNet  Google Scholar 

  13. Fischer, M.T., Arya, D., Streeb, D., Seebacher, D., Keim, D.A., Worring, M.: Visual analytics for temporal hypergraph model exploration. IEEE Trans. Vis. Comput. Graph. 27(2), 550–560 (2021). https://doi.org/10.1109/tvcg.2020.3030408

    Article  Google Scholar 

  14. Gasparovic, E., et al.: Homology of graphs and hypergraphs (2021). https://www.youtube.com/watch?v=XeNBysFcwOw

  15. Golczynski, A., Emanuello, J.A.: End-to-end anomaly detection for identifying malicious cyber behavior through NLP-based log embeddings. arXiv preprint arXiv:2108.12276 (2021)

  16. Hanselmann, M., Strauss, T., Dormann, K., Ulmer, H.: CANet: an unsupervised intrusion detection system for high dimensional can bus data. IEEE Access 8, 58194–58205 (2020)

    Article  Google Scholar 

  17. Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–87 (1997). https://doi.org/10.1016/s0895-7177(97)00050-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Husein, I., Mawengkang, H., Suwilo, S., Mardiningsih: modeling the transmission of infectious disease in a dynamic network. J. Phys.: Conf. Ser. 1255(1), 012052 (2019). https://doi.org/10.1088/1742-6596/1255/1/012052

  19. Joslyn, C.A., et al.: Hypernetwork science: from multidimensional networks to computational topology. In: Braha, D., et al. (eds.) ICCS 2020. SPC, pp. 377–392. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67318-5_25

    Chapter  Google Scholar 

  20. Khasawneh, F., Munch, E.: Chatter detection in turning using persistent homology. Mech. Syst. Signal Process. 70–71, 527–541 (2016). https://doi.org/10.1016/j.ymssp.2015.09.046

    Article  Google Scholar 

  21. Munch, E.: A user’s guide to topological data analysis. J. Learn. Anal. 4(2), 47–61 (2017). https://doi.org/10.18608/jla.2017.42.6

  22. Myers, A., Munch, E., Khasawneh, F.A.: Persistent homology of complex networks for dynamic state detection. Phys. Rev. E 100(2), 022314 (2019). https://doi.org/10.1103/physreve.100.022314

    Article  MathSciNet  Google Scholar 

  23. Myers, A., Muñoz, D., Khasawneh, F., Munch, E.: Temporal network analysis using zigzag persistence. EPJ Data Sci. 12(1), 6 (2022)

    Article  Google Scholar 

  24. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 1–38 (2017). https://doi.org/10.1140/epjds/s13688-017-0109-5

    Article  Google Scholar 

  25. Ren, S.: Persistent homology for hypergraphs and computational tools—a survey for users. J. Knot Theory Ramifications 29(13), 2043007 (2020). https://doi.org/10.1142/s0218216520430075

    Article  MathSciNet  MATH  Google Scholar 

  26. Schäfer, B., Witthaut, D., Timme, M., Latora, V.: Dynamically induced cascading failures in power grids. Nat. Commun. 9(1), 1975 (2018). https://doi.org/10.1038/s41467-018-04287-5

    Article  Google Scholar 

  27. Skaf, Y., Laubenbacher, R.: Topological data analysis in biomedicine: a review. J. Biomed. Inf. 130, 104082 (2022). https://doi.org/10.1016/j.jbi.2022.104082

    Article  Google Scholar 

  28. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. Proc. Natl. Acad. Sci. 97(16), 9340–9346 (2000). https://doi.org/10.1073/pnas.97.16.9340

    Article  MATH  Google Scholar 

  29. Tempelman, J.R., Khasawneh, F.A.: A look into chaos detection through topological data analysis. Phys. D: Nonlinear Phenom. 406, 132446 (2020). https://doi.org/10.1016/j.physd.2020.132446

    Article  MathSciNet  MATH  Google Scholar 

  30. Tymochko, S., Munch, E., Khasawneh, F.: Using zigzag persistent homology to detect Hopf bifurcations in dynamical systems. Algorithms 13(11), 278 (2020). https://doi.org/10.3390/a13110278

    Article  MathSciNet  Google Scholar 

  31. Xu, M., Radhakrishnan, S., Kamarthi, S., Jin, X.: Resiliency of mutualistic supplier-manufacturer networks. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/s41598-019-49932-1

    Article  Google Scholar 

  32. Yesilli, M.C., Chumley, M.M., Chen, J., Khasawneh, F.A., Guo, Y.: Exploring surface texture quantification in piezo vibration striking treatment (PVST) using topological measures. In: Volume 2: Manufacturing Processes; Manufacturing Systems. American Society of Mechanical Engineers (2022). https://doi.org/10.1115/msec2022-86659

  33. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2004). https://doi.org/10.1007/s00454-004-1146-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audun Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myers, A., Joslyn, C., Kay, B., Purvine, E., Roek, G., Shapiro, M. (2023). Topological Analysis of Temporal Hypergraphs. In: Dewar, M., Prałat, P., Szufel, P., Théberge, F., Wrzosek, M. (eds) Algorithms and Models for the Web Graph. WAW 2023. Lecture Notes in Computer Science, vol 13894. Springer, Cham. https://doi.org/10.1007/978-3-031-32296-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32296-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32295-2

  • Online ISBN: 978-3-031-32296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics