iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-31778-1_2
Multi-depth Boundary-Aware Left Atrial Scar Segmentation Network | SpringerLink
Skip to main content

Multi-depth Boundary-Aware Left Atrial Scar Segmentation Network

  • Conference paper
  • First Online:
Left Atrial and Scar Quantification and Segmentation (LAScarQS 2022)

Abstract

Automatic segmentation of left atrial (LA) scars from late gadolinium enhanced CMR images is a crucial step for atrial fibrillation (AF) recurrence analysis. However, delineating LA scars is tedious and error-prone due to the variation of scar shapes. In this work, we propose a boundary-aware LA scar segmentation network, which is composed of two branches to segment LA and LA scars, respectively. We explore the inherent spatial relationship between LA and LA scars. By introducing a Sobel fusion module between the two segmentation branches, the spatial information of LA boundaries can be propagated from the LA branch to the scar branch. Thus, LA scar segmentation can be performed condition on the LA boundaries regions. In our experiments, 40 labeled images were used to train the proposed network, and the remaining 20 labeled images were used for evaluation. The network achieved an average Dice score of 0.608 for LA scar segmentation.

M. Wu and W. Ding—The two authors have equal contributions to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balk, E.M., Garlitski, A.C., Alsheikh-Ali, A.A., Terasawa, T., Chung, M., Ip, S.: Predictors of atrial fibrillation recurrence after radiofrequency catheter ablation: a systematic review. J. Cardiovasc. Electrophysiol. 21(11), 1208–1216 (2010)

    Google Scholar 

  2. Chen, J., et al.: Multiview two-task recursive attention model for left atrium and atrial scars segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_51

    Chapter  Google Scholar 

  3. Heeringa, J., et al.: Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27(8), 949–953 (2006)

    Article  Google Scholar 

  4. Isensee, F., et al.: nnu-net: Self-adapting framework for U-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  5. Jefairi, N.A., et al.: Relationship between atrial scar on cardiac magnetic resonance and pulmonary vein reconnection after catheter ablation for paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 30(5), 727–740 (2019)

    Article  Google Scholar 

  6. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  7. Karim, R., et al.: Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge. J. Cardiovasc. Magn. Reson. 15(1), 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  8. Kirchhof, P., Calkins, H.: Catheter ablation in patients with persistent atrial fibrillation. Eur. Heart J. 38(1), 20–26 (2017)

    Article  Google Scholar 

  9. Li, L., Weng, X., Schnabel, J.A., Zhuang, X.: Joint left atrial segmentation and scar quantification based on a DNN with spatial encoding and shape attention. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 118–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_12

    Chapter  Google Scholar 

  10. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: AtrialGeneral: domain generalization for left atrial segmentation of multi-center LGE MRIs. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 557–566. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_54

    Chapter  Google Scholar 

  11. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: Atrialjsqnet: a new framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information. Med. Image Anal. 76, 102303 (2022)

    Article  Google Scholar 

  12. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: Medical image analysis on left atrial LGE MRI for atrial fibrillation studies: a review. Med. Image Anal. 102360 (2022)

    Google Scholar 

  13. Xu, Z., Wu, Z., Feng, J.: CFUN: combining faster R-CNN and U-net network for efficient whole heart segmentation. arXiv preprint arXiv:1812.04914 (2018)

  14. Yang, G., et al.: Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention. Futur. Gener. Comput. Syst. 107, 215–228 (2020)

    Article  Google Scholar 

  15. Zghaib, T., Nazarian, S.: New insights into the use of cardiac magnetic resonance imaging to guide decision making in atrial fibrillation management. Can. J. Cardiol. 34(11), 1461–1470 (2018)

    Article  Google Scholar 

  16. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Ding, W., Yang, M., Huang, L. (2023). Multi-depth Boundary-Aware Left Atrial Scar Segmentation Network. In: Zhuang, X., Li, L., Wang, S., Wu, F. (eds) Left Atrial and Scar Quantification and Segmentation. LAScarQS 2022. Lecture Notes in Computer Science, vol 13586. Springer, Cham. https://doi.org/10.1007/978-3-031-31778-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31778-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31777-4

  • Online ISBN: 978-3-031-31778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics