Abstract
Recently, recommendation algorithms based on Graph Convolution Network (GCN) have achieved many surprising results thanks to the ability of GCN to learn more efficient node embeddings. However, although GCN shows powerful feature extraction capability in user-item bipartite graphs, the GCN-based methods appear powerless for knowledge graph (KG) with complex structures and rich information. In addition, all of the existing GCN-based recommendation systems suffer from the over-smoothing problem, which results in the models not being able to utilize higher-order neighborhood information, and thus these models always achieve their best performance at shallower layers. In this paper, we propose a Deep Light Graph Convolution Network for Knowledge Graph (KDL-GCN) to alleviate the above limitations. Firstly, the User-Entity Bipartite Graph approach (UE-BP) is proposed to simplify knowledge graph, which leverages entity information by constructing multiple interaction graphs. Secondly, a Deep Light Graph Convolution Network (DLGCN) is designed to make full use of higher-order neighborhood information. Finally, experiments on three real-world datasets show that the KDL-GCN proposed in this paper achieves substantial improvement compared to the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berg, R.V.d., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017)
Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.S.: Attentive collaborative filtering: multimedia recommendation with item-and component-level attention. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–344 (2017)
Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 27–34 (2020)
Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)
Cheng, Z., Chang, X., Zhu, L., Kanjirathinkal, R.C., Kankanhalli, M.: MMALFM: explainable recommendation by leveraging reviews and images. ACM Trans. Inf. Syst. (TOIS) 37(2), 1–28 (2019)
Cheng, Z., Ding, Y., Zhu, L., Kankanhalli, M.: Aspect-aware latent factor model: rating prediction with ratings and reviews. In: Proceedings of the 2018 World Wide Web Conference, pp. 639–648 (2018)
Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266 (2019)
Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198 (2016)
Fan, W., et al.: Graph neural networks for social recommendation. In: The World Wide Web Conference, pp. 417–426 (2019)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of the 25th International Conference on World Wide Web, pp. 507–517 (2016)
He, X., Chen, T., Kan, M.Y., Chen, X.: Trirank: review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670 (2015)
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)
He, X., He, Z., Song, J., Liu, Z., Jiang, Y.G., Chua, T.S.: Nais: neural attentive item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30(12), 2354–2366 (2018)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)
He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 549–558 (2016)
Hsieh, C.K., Yang, L., Cui, Y., Lin, T.Y., Belongie, S., Estrin, D.: Collaborative metric learning. In: Proceedings of the 26th International Conference on World Wide Web, pp. 193–201 (2017)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)
Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 659–667 (2013)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434 (2008)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., Nie, L.: Long-tail hashtag recommendation for micro-videos with graph convolutional network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 509–518 (2019)
Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)
Liu, F., Cheng, Z., Zhu, L., Gao, Z., Nie, L.: Interest-aware message-passing GCN for recommendation. In: Proceedings of the Web Conference 2021, pp. 1296–1305 (2021)
Mei, D., Huang, N., Li, X.: Light graph convolutional collaborative filtering with multi-aspect information. IEEE Access 9, 34433–34441 (2021)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)
Sha, X., Sun, Z., Zhang, J.: Attentive knowledge graph embedding for personalized recommendation. arXiv preprint arXiv:1910.08288 (2019)
Shi, C., et al.: Deep collaborative filtering with multi-aspect information in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering (2019)
Shi, Y., Larson, M., Hanjalic, A.: List-wise learning to rank with matrix factorization for collaborative filtering. In: Proceedings of the fourth ACM Conference on Recommender Systems, pp. 269–272 (2010)
Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., Tang, J.: Session-based social recommendation via dynamic graph attention networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 555–563 (2019)
Sun, J., et al.: Multi-graph convolution collaborative filtering. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 1306–1311. IEEE (2019)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Wang, H., et al.: Knowledge-aware graph neural networks with label smoothness regularization for recommender systems. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 968–977 (2019)
Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference, pp. 3307–3313 (2019)
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)
Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)
Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1001–1010 (2020)
Wang, X., Wang, R., Shi, C., Song, G., Li, Q.: Multi-component graph convolutional collaborative filtering. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6267–6274 (2020)
Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., Wang, M.: Diffnet++: a neural influence and interest diffusion network for social recommendation. IEEE Trans. Knowl. Data Eng. (2020)
Wu, Q., et al.: Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In: The World Wide Web Conference, pp. 2091–2102 (2019)
Wu, S., Sun, F., Zhang, W., Cui, B.: Graph neural networks in recommender systems: a survey. arXiv preprint arXiv:2011.02260 (2020)
Wu, S., Zhang, M., Jiang, X., Ke, X., Wang, L.: Personalizing graph neural networks with attention mechanism for session-based recommendation. arXiv preprint arXiv:1910.08887 (2019)
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)
Zhang, J., Shi, X., Zhao, S., King, I.: Star-GCN: stacked and reconstructed graph convolutional networks for recommender systems. arXiv preprint arXiv:1905.13129 (2019)
Zhang, M., Chen, Y.: Inductive matrix completion based on graph neural networks. arXiv preprint arXiv:1904.12058 (2019)
Zhao, J., et al.: IntentGC: a scalable graph convolution framework fusing heterogeneous information for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2347–2357 (2019)
Zheng, L., Lu, C.T., Jiang, F., Zhang, J., Yu, P.S.: Spectral collaborative filtering. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 311–319 (2018)
Zhu, H., et al.: Learning tree-based deep model for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1079–1088 (2018)
Acknowledgements
This work was supported by the Basic and Applied Basic Research of Guangdong Province under grant [No.2015A030308018], the authors express their thanks to the grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, X., Xiao, N. (2023). Recommendation Algorithm Based on Deep Light Graph Convolution Network in Knowledge Graph. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13980. Springer, Cham. https://doi.org/10.1007/978-3-031-28244-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-28244-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28243-0
Online ISBN: 978-3-031-28244-7
eBook Packages: Computer ScienceComputer Science (R0)