Abstract
The research done in this study has delved deeply into the changes made to digital images that are uploaded to three of the major social media platforms and image storage services in today’s society: Facebook, Flickr, and Google Photos. In addition to providing up-to-date data on an ever-changing landscape of different social media networks’ digital fingerprints, a deep analysis of the social networks’ filename conventions has resulted in two new approaches in (i) estimating the true upload date of Flickr photos, regardless of whether the dates have been changed by the user or not, and regardless of whether the image is available to the public or has been deleted from the platform; (ii) revealing the photo ID of a photo uploaded to Facebook based solely on the file name of the photo.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acker, A.: Data craft: the manipulation of social media metadata. Data Soc. Res Institute 13 (2018)
Beaver, D., Kumar, S., Li, H.C., Sobel, J., Vajgel, P.: Finding a needle in haystack: Facebook’s photo storage. In: 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2010) (2010)
Ben-Yair, S.: Updating google photos’ storage policy to build for the future (2020). https://blog.google/products/photos/storage-changes/
Bharati, A., et al.: Beyond pixels: image provenance analysis leveraging metadata. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1692–1702. IEEE (2019)
Broz, M.: Number of photos (2022): Statistics, facts, & predictions (2022). https://photutorial.com/photos-statistics/
Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 219–224 (2015)
Ferreira, W.D., Ferreira, C.B., da Cruz Júnior, G., Soares, F.: A review of digital image forensics. Comput. Electr. Eng. 85, 106685 (2020)
Giudice, O., Paratore, A., Moltisanti, M., Battiato, S.: A classification engine for image ballistics of social data. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 625–636. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_57
Harvey, P.: Exiftool by phil harvey (2013)
Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from jpeg headers. IEEE Trans. Inf. Forensics Secur. 6(3), 1066–1075 (2011)
Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: Blind PRNU-based image clustering for source identification. IEEE Trans. Inf. Forensics Secur. 12(9), 2197–2211 (2017)
Mehta, V., Gupta, P., Subramanian, R., Dhall, A.: Fakebuster: a deepfakes detection tool for video conferencing scenarios. In: 26th International Conference on Intelligent User Interfaces-Companion, pp. 61–63 (2021)
Moltisanti, M., Paratore, A., Battiato, S., Saravo, L.: Image manipulation on facebook for forensics evidence. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9280, pp. 506–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23234-8_47
Mullan, P., Riess, C., Freiling, F.: Forensic source identification using jpeg image headers: the case of smartphones. Digit. Investig. 28, S68–S76 (2019)
Pasquini, C., Amerini, I., Boato, G.: Media forensics on social media platforms: a survey. EURASIP J. Inf. Secur. 2021(1), 1–19 (2021). https://doi.org/10.1186/s13635-021-00117-2
Redi, J.A., Taktak, W., Dugelay, J.L.: Digital image forensics: a booklet for beginners. Multim. Tools Appl. 51(1), 133–162 (2011)
Riggs, C., Douglas, T., Gagneja, K.: Image mapping through metadata. In: 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC), pp. 1–8. IEEE (2018)
Sandoval Orozco, A., Arenas González, D., Rosales Corripio, J., García Villalba, L.J., Hernandez-Castro, J.C.: Source identification for mobile devices, based on wavelet transforms combined with sensor imperfections. Computing 96(9), 829–841 (2014)
Siddiqui, N., Anjum, A., Saleem, M., Islam, S.: Social media origin based image tracing using deep CNN. In: 2019 Fifth International Conference on Image Information Processing (ICIIP), pp. 97–101. IEEE (2019)
Sjøen, V.V.: Ibsntools - image ballistics in social networks
Tran, C.H., et al.: Dedigi: a privacy-by-design platform for image forensics. In: Proceedings of the 3rd ACM Workshop on Intelligent Cross-Data Analysis and Retrieval, pp. 58–62 (2022)
Vo, N.H., Phan, K.D., Tran, A.-D., Dang-Nguyen, D.-T.: Adversarial attacks on Deepfake detectors: a practical analysis. In: Þór Jónsson, B., Gurrin, C., Tran, M.-T., Dang-Nguyen, D.-T., Hu, A.M.-C., Huynh Thi Thanh, B., Huet, B. (eds.) MMM 2022. LNCS, vol. 13142, pp. 318–330. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_27
Acknowledgement
The results of this study are based on the consulting agreement between the Intelligent Information Systems (I2S) research group, University of Bergen, Norway and University of Science, VNU-HCM, Vietnam. The research was funded by European Horizon 2020 grant number 825469.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dang-Nguyen, DT., Sjøen, V.V., Le, DH., Dao, TP., Tran, AD., Tran, MT. (2023). Practical Analyses of How Common Social Media Platforms and Photo Storage Services Handle Uploaded Images. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-27818-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27817-4
Online ISBN: 978-3-031-27818-1
eBook Packages: Computer ScienceComputer Science (R0)