iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-27034-5_13
Feature Selection and Extreme Learning Machine Tuning by Hybrid Sand Cat Optimization Algorithm for Diabetes Classification | SpringerLink
Skip to main content

Feature Selection and Extreme Learning Machine Tuning by Hybrid Sand Cat Optimization Algorithm for Diabetes Classification

  • Conference paper
  • First Online:
Modelling and Development of Intelligent Systems (MDIS 2022)

Abstract

It is vitally important to establish a system that is able to provide an early detection of diabetes as a stealth disease of modern era. In order to achieve this goal, this manuscript proposes a novel framework for feature selection and extreme learning machine (ELM) hyper-parameter optimization applied to diabetes diagnostics. Feature selection and hyper-parameter optimization are two of the most important challenges in the domain of machine learning and they both belong to the group of NP-hard challenges. An upgraded version of the newly suggested sand cat swarm optimization (SCSO) is developed to address these issues, and adapted for ELM hyper-parameter tuning and feature selection. A preliminary set of biases and weights are established using the proposed approach, as well as the optimal (sub-optimal) no. of neurons for the ELM hidden layer, as well as to establish initial set of biases and weights. Furthermore, each swarm individual also tries to select the most relevant features for classification tasks against a widely utilized diabetes dataset. The performance of proposed methods was compared to other well-known state-of-the-art swarm intelligence algorithms in terms of accuracy, precision, recall and f1 score. Experimental findings demonstrate that the improved SCSO is more efficient than other algorithms in addressing both challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bacanin, N., et al.: Artificial neural networks hidden unit and weight connection optimization by quasi-refection-based learning artificial bee colony algorithm. IEEE Access 9, 169135–169155 (2021)

    Article  Google Scholar 

  2. Bacanin, N., Bezdan, T., Zivkovic, M., Chhabra, A.: Weight optimization in artificial neural network training by improved monarch butterfly algorithm. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds.) Mobile Computing and Sustainable Informatics. LNDECT, vol. 68, pp. 397–409. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-1866-6_29

    Chapter  Google Scholar 

  3. Bacanin, N., Petrovic, A., Zivkovic, M., Bezdan, T., Antonijevic, M.: Feature selection in machine learning by hybrid sine cosine metaheuristics. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds.) ICACDS 2021. CCIS, vol. 1440, pp. 604–616. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81462-5_53

    Chapter  Google Scholar 

  4. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New Bionics? NATO ASI Series, vol. 102, pp. 703–712. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-58069-7_38

    Chapter  Google Scholar 

  5. Bezdan, T., Zivkovic, M., Bacanin, N., Chhabra, A., Suresh, M.: Feature selection by hybrid brain storm optimization algorithm for COVID-19 classification. J. Comput. Biol. 29, 515–529 (2022)

    Article  MathSciNet  Google Scholar 

  6. Butt, U.M., Letchmunan, S., Ali, M., Hassan, F.H., Baqir, A., Sherazi, H.H.R.: Machine learning based diabetes classification and prediction for healthcare applications. J. Healthc. Eng. (2021)

    Google Scholar 

  7. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40, 16–28 (2014)

    Article  Google Scholar 

  8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  9. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Australia, vol. 1948 (1942)

    Google Scholar 

  10. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  11. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42, 513–529 (2012)

    Article  Google Scholar 

  12. Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14, 274–281 (2003). https://doi.org/10.1109/TNN.2003.809401

    Article  Google Scholar 

  13. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), vol. 2, pp. 985–990 (2004). https://doi.org/10.1109/IJCNN.2004.1380068

  14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  15. Jovanovic, D., Antonijevic, M., Stankovic, M., Zivkovic, M., Tanaskovic, M., Bacanin, N.: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10, 2272 (2022). https://doi.org/10.3390/math10132272

    Article  Google Scholar 

  16. Jovanovic, D., Antonijevic, M., Stankovic, M., Zivkovic, M., Tanaskovic, M., Bacanin, N.: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10(13) (2022). https://doi.org/10.3390/math10132272, https://www.mdpi.com/2227-7390/10/13/2272

  17. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  19. American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1), 81–90 (2014)

    Google Scholar 

  20. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  21. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model, vol. 21, pp. 25–34. Association for Computing Machinery, New York (1987). https://doi.org/10.1145/37402.37406

  22. Serre, D.: Matrices. Graduate Texts in Mathematics, 2nd edn. Springer, New York (2010)

    Book  MATH  Google Scholar 

  23. Seyyedabbasi, A., Kiani, F.: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng. Comput. 1–25 (2022). https://doi.org/10.1007/s00366-022-01604-x

  24. Wang, G.G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1–5. IEEE (2015)

    Google Scholar 

  25. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  26. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29, 464–483 (2012)

    Article  Google Scholar 

  27. Zivkovic, M., et al.: COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Urban Areas 66, 102669 (2021)

    Google Scholar 

  28. Zivkovic, M., Stoean, C., Chhabra, A., Budimirovic, N., Petrovic, A., Bacanin, N.: Novel improved salp swarm algorithm: an application for feature selection. Sensors 22(5), 1711 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stankovic, M. et al. (2023). Feature Selection and Extreme Learning Machine Tuning by Hybrid Sand Cat Optimization Algorithm for Diabetes Classification. In: Simian, D., Stoica, L.F. (eds) Modelling and Development of Intelligent Systems. MDIS 2022. Communications in Computer and Information Science, vol 1761. Springer, Cham. https://doi.org/10.1007/978-3-031-27034-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27034-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27033-8

  • Online ISBN: 978-3-031-27034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics