iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-26293-7_38
Looking from a Higher-Level Perspective: Attention and Recognition Enhanced Multi-scale Scene Text Segmentation | SpringerLink
Skip to main content

Looking from a Higher-Level Perspective: Attention and Recognition Enhanced Multi-scale Scene Text Segmentation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

Scene text segmentation, which aims to generate pixel-level text masks, is an integral part of many fine-grained text tasks, such as text editing and text removal. Multi-scale irregular scene texts are often trapped in complex background noise around the image, and their textures are diverse and sometimes even similar to those of the background. These specific problems bring challenges that make general segmentation methods ineffective in the context of scene text. To tackle the aforementioned issues, we propose a new scene text segmentation pipeline called Attention and Recognition enhanced Multi-scale segmentation Network (ARM-Net), which consists of three main components: Text Segmentation Module (TSM) generates rectangular receptive fields of various sizes to fit scene text and integrate global information adequately; Dual Perceptual Decoder (DPD) strengthens the connection between pixels that belong to the same category from the spatial and channel perspective simultaneously during upsampling, and Recognition Enhanced Module (REM) provides text attention maps as a prior for the segmentation network, which can inherently distinguish text from background noise. Via extensive experiments, we demonstrate the effectiveness of each module of ARM-Net, and its performance surpasses that of existing state-of-the-art scene text segmentation methods. We also show that the pixel-level mask produced by our method can further improve the performance of text removal and scene text recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonechi, S., Bianchini, M., Scarselli, F., Andreini, P.: Weak supervision for generating pixel-level annotations in scene text segmentation. Pattern Recogn. Lett. 138, 1–7 (2020)

    Article  Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Ch’ng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition, vol. 1, pp. 935–942. IEEE (2017)

    Google Scholar 

  5. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Huang, H., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

    Google Scholar 

  9. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  10. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227 (2014)

  11. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  12. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1484–1493. IEEE (2013)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Krishnan, P., Kovvuri, R., Pang, G., Vassilev, B., Hassner, T.: TextStyleBrush: transfer of text aesthetics from a single example. arXiv preprint arXiv:2106.08385 (2021)

  15. Lafferty, J., Mccallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML (2002)

    Google Scholar 

  16. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9167–9176 (2019)

    Google Scholar 

  17. Liu, C., Liu, Y., Jin, L., Zhang, S., Luo, C., Wang, Y.: EraseNet: end-to-end text removal in the wild. IEEE Trans. Image Process. 29, 8760–8775 (2020)

    Article  MATH  Google Scholar 

  18. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. Lucas, S.M., et al.: ICDAR 2003 robust reading competitions: entries, results, and future directions. Int. J. Doc. Anal. Recogn. 7(2), 105–122 (2005)

    Article  Google Scholar 

  21. Luo, C., Jin, L., Sun, Z.: MORAN: a multi-object rectified attention network for scene text recognition. Pattern Recogn. 90, 109–118 (2019)

    Article  Google Scholar 

  22. Nayef, N., et al.: ICDAR 2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT. In: 2017 14th IAPR International Conference on Document Analysis and Recognition, vol. 1, pp. 1454–1459. IEEE (2017)

    Google Scholar 

  23. Rong, X., Yi, C., Tian, Y.: Unambiguous scene text segmentation with referring expression comprehension. IEEE Trans. Image Process. 29, 591–601 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Roy, P., Bhattacharya, S., Ghosh, S., Pal, U.: STEFANN: scene text editor using font adaptive neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13228–13237 (2020)

    Google Scholar 

  26. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  27. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2018)

    Article  Google Scholar 

  28. Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  30. Veit, A., Matera, T., Neumann, L., Matas, J., Belongie, S.: COCO-text: dataset and benchmark for text detection and recognition in natural images. arXiv preprint arXiv:1601.07140 (2016)

  31. Wang, C., Komodakis, N., Paragios, N.: Markov random field modeling, inference & learning in computer vision & image understanding: a survey. Comput. Vis. Image Underst. 117(11), 1610–1627 (2013)

    Article  Google Scholar 

  32. Wang, C., et al.: Semi-supervised pixel-level scene text segmentation by mutually guided network. IEEE Trans. Image Process. 30, 8212–8221 (2021)

    Article  Google Scholar 

  33. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  34. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: CARAFE: content-aware reassembly of features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3007–3016 (2019)

    Google Scholar 

  35. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  36. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: 2011 International Conference on Computer Cision, pp. 1457–1464. IEEE (2011)

    Google Scholar 

  37. Wang, T., et al.: Decoupled attention network for text recognition. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 12216–12224 (2020)

    Google Scholar 

  38. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  39. Wu, L., et al.: Editing text in the wild. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1500–1508 (2019)

    Google Scholar 

  40. Xu, X., Zhang, Z., Wang, Z., Price, B., Wang, Z., Shi, H.: Rethinking text segmentation: a novel dataset and a text-specific refinement approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12045–12055 (2021)

    Google Scholar 

  41. Xu, X., Qi, Z., Ma, J., Zhang, H., Shan, Y., Qie, X.: BTS: a bi-lingual benchmark for text segmentation in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19152–19162 (2022)

    Google Scholar 

  42. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  43. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  44. Zhang, S., Liu, Y., Jin, L., Huang, Y., Lai, S.: EnsNet: ensconce text in the wild. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 801–808 (2019)

    Google Scholar 

  45. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  46. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported in part by NSFC (Grant No.: 61936003), GD-NSF (no.2017A030312006, No.2021A1515011870), Zhuhai Industry Core and Key Technology Research Project (no. ZH22044702200058PJL), and the Science and Technology Foundation of Guangzhou Huangpu Development District (Grant 2020GH17)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwen Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, Y., Zhang, J., Chen, B., Zhang, X., Jin, L. (2023). Looking from a Higher-Level Perspective: Attention and Recognition Enhanced Multi-scale Scene Text Segmentation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13847. Springer, Cham. https://doi.org/10.1007/978-3-031-26293-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26293-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26292-0

  • Online ISBN: 978-3-031-26293-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics