iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-25158-0_41
Iterative Deep Graph Learning with Local Feature Augmentation for Network Alignment | SpringerLink
Skip to main content

Iterative Deep Graph Learning with Local Feature Augmentation for Network Alignment

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Networks are structures that naturally capture relations between entities in different data sources and information systems. To establish the connections among different networks, the task of network alignment is proposed and intensively studied in network-related research field. Most network alignment methods are based on the representation learning of network structure, which rely only on network topology and are susceptible to structural noise. In addition, such methods focus on the global features, while largely neglect local structure features and fail to take account of the data sparsity issue in real networks. To address these pivotal issues, we propose a novel network alignment method based on iterative deep network learning and local feature augmentation. We first design an iterative deep graph learning model to learn high-quality network structural representation and reduce the structural noise. Furthermore, we embed knowledge representation learning method into the alignment process, which helps to characterize better local structure and alleviate the data sparsity issue. Experiments on real-world network datasets demonstrate that our proposed model achieves state-of-the-art alignment results.

Supported by Ministry of Science and Technology of China under grants No. 2020AAA0108800, NSFC under grants Nos. 71971212 and 61902417.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/ayushkalla1/rotten-tomatoes-movie-database.

  2. 2.

    https://www.kaggle.com/jyoti1706/imdbmoviesdataset.

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 705–710. IEEE (2009)

    Google Scholar 

  3. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  4. Chen, Y., Wu, L., Zaki, M.: Iterative deep graph learning for graph neural networks: better and robust node embeddings. Adv. Neural. Inf. Process. Syst. 33, 19314–19326 (2020)

    Google Scholar 

  5. Gao, H., Zhang, Y., Li, B.: Improving the link prediction by exploiting the collaborative and context-aware social influence. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 302–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_22

    Chapter  Google Scholar 

  6. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  7. Guzzi, P.H., Milenković, T.: Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Brief. Bioinform. 19(3), 472–481 (2018)

    Google Scholar 

  8. Heimann, M., Shen, H., Safavi, T., Koutra, D.: Regal: representation learning-based graph alignment. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 117–126 (2018)

    Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  10. Koutra, D., Tong, H., Lubensky, D.: Big-align: fast bipartite graph alignment. In: 2013 IEEE 13th International Conference on Data Mining, pp. 389–398. IEEE (2013)

    Google Scholar 

  11. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  12. Liu, J., Shao, Y., Su, S.: Multiple local community detection via high-quality seed identification over both static and dynamic networks. Data Sci. Eng. 6(3), 249–264 (2021)

    Article  Google Scholar 

  13. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: IJCAI, pp. 1774–1780 (2016)

    Google Scholar 

  14. Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and mapping approach. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2464–2470 (2017)

    Google Scholar 

  15. Man, T., Shen, H., Liu, S., Jin, X., Cheng, X.: Predict anchor links across social networks via an embedding approach. In: IJCAI, vol. 16, pp. 1823–1829 (2016)

    Google Scholar 

  16. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114 (2016)

    Google Scholar 

  17. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying Deepwalk, Line, PTE, and Node2Vec. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 459–467 (2018)

    Google Scholar 

  18. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. 105(35), 12763–12768 (2008)

    Article  Google Scholar 

  19. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: IJCAI, vol. 18, pp. 4396–4402 (2018)

    Google Scholar 

  20. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2018)

    Google Scholar 

  21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  22. Trung, H.T., Van Vinh, T., Tam, N.T., Yin, H., Weidlich, M., Hung, N.Q.V.: Adaptive network alignment with unsupervised and multi-order convolutional networks. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 85–96. IEEE (2020)

    Google Scholar 

  23. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42 (2009)

    Google Scholar 

  24. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  25. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  26. Zeng, W., Zhao, X., Wang, W., Tang, J., Tan, Z.: Degree-aware alignment for entities in tail. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 811–820 (2020)

    Google Scholar 

  27. Zhang, J., Philip, S.Y.: Multiple anonymized social networks alignment. In: 2015 IEEE International Conference on Data Mining, pp. 599–608. IEEE (2015)

    Google Scholar 

  28. Zhang, S., Tong, H.: Final: fast attributed network alignment. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1345–1354 (2016)

    Google Scholar 

  29. Zhou, C., Liu, Y., Liu, X., Liu, Z., Gao, J.: Scalable graph embedding for asymmetric proximity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  30. Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: a deep learning approach for user identity linkage. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications. pp. 1313–1321. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, J., Tan, Z., Guo, H., Huang, X., Zeng, W., Peng, H. (2023). Iterative Deep Graph Learning with Local Feature Augmentation for Network Alignment. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13421. Springer, Cham. https://doi.org/10.1007/978-3-031-25158-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25158-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25157-3

  • Online ISBN: 978-3-031-25158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics