iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-25072-9_48
Visible-Infrared Person Re-Identification Using Privileged Intermediate Information | SpringerLink
Skip to main content

Visible-Infrared Person Re-Identification Using Privileged Intermediate Information

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Visible-infrared person re-identification (ReID) aims to recognize a same person of interest across a network of RGB and IR cameras. Some deep learning (DL) models have directly incorporated both modalities to discriminate persons in a joint representation space. However, this cross-modal ReID problem remains challenging due to the large domain shift in data distributions between RGB and IR modalities. This paper introduces a novel approach for a creating intermediate virtual domain that acts as bridges between the two main domains (i.e., RGB and IR modalities) during training. This intermediate domain is considered as privileged information (PI) that is unavailable at test time, and allows formulating this cross-modal matching task as a problem in learning under privileged information (LUPI). We devised a new method to generate images between visible and infrared domains that provide additional information to train a deep ReID model through an intermediate domain adaptation. In particular, by employing color-free and multi-step triplet loss objectives during training, our method provides common feature representation spaces that are robust to large visible-infrared domain shifts. Experimental results on challenging visible-infrared ReID datasets indicate that our proposed approach consistently improves matching accuracy, without any computational overhead at test time. The code is available at: https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, K., Pan, Z., Wang, J., Jiao, S., Zeng, Z., Miao, Z.: Joint feature learning network for visible-infrared person re-identification. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12306, pp. 652–663. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60639-8_54

    Chapter  Google Scholar 

  2. Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z.: Neural feature search for RGB-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 587–597 (2021)

    Google Scholar 

  3. Cho, J.W., Kim, D.J., Choi, J., Jung, Y., Kweon, I.S.: Dealing with missing modalities in the visual question answer-difference prediction task through knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1592–1601 (2021)

    Google Scholar 

  4. Choi, C., Kim, S., Ramani, K.: Learning hand articulations by hallucinating heat distribution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3104–3113 (2017)

    Google Scholar 

  5. Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C.: HI-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10257–10266 (2020)

    Google Scholar 

  6. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: Mars: motion-augmented RGB stream for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7882–7891 (2019)

    Google Scholar 

  7. Dai, P., Ji, R., Wang, H., Wu, Q., Huang, Y.: Cross-modality person re-identification with generative adversarial training. In: IJCAI, vol. 1, p. 2 (2018)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Fan, X., Luo, H., Zhang, C., Jiang, W.: Cross-spectrum dual-subspace pairing for RGB-infrared cross-modality person re-identification. ArXiv abs/2003.00213 (2020)

    Google Scholar 

  10. Fu, C., Hu, Y., Wu, X., Shi, H., Mei, T., He, R.: CM-NAS: cross-modality neural architecture search for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11823–11832 (2021)

    Google Scholar 

  11. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Hao, Y., Li, J., Wang, N., Gao, X.: Modality adversarial neural network for visible-thermal person re-identification. Pattern Recogn. 107, 107533 (2020)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modality hallucination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 826–834 (2016)

    Google Scholar 

  15. Jia, M., Zhai, Y., Lu, S., Ma, S., Zhang, J.: A similarity inference metric for RGB-infrared cross-modality person re-identification. arXiv preprint arXiv:2007.01504 (2020)

  16. Jiang, J., Jin, K., Qi, M., Wang, Q., Wu, J., Chen, C.: A cross-modal multi-granularity attention network for RGB-IR person re-identification. Neurocomputing 406, 59–67 (2020)

    Article  Google Scholar 

  17. Kampffmeyer, M., Salberg, A.B., Jenssen, R.: Urban land cover classification with missing data modalities using deep convolutional neural networks. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 11(6), 1758–1768 (2018)

    Article  Google Scholar 

  18. Kiran, M., Praveen, R.G., Nguyen-Meidine, L.T., Belharbi, S., Blais-Morin, L.A., Granger, E.: Holistic guidance for occluded person re-identification. In: British Machine Vision Conference (BMVC) (2021)

    Google Scholar 

  19. Kniaz, V.V., Knyaz, V.A., Hladůvka, J., Kropatsch, W.G., Mizginov, V.: ThermalGAN: multimodal color-to-thermal image translation for person re-identification in multispectral dataset. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 606–624. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_46

    Chapter  Google Scholar 

  20. Kumar, S., Banerjee, B., Chaudhuri, S.: Improved landcover classification using online spectral data hallucination. Neurocomputing 439, 316–326 (2021)

    Article  Google Scholar 

  21. Lambert, J., Sener, O., Savarese, S.: Deep learning under privileged information using heteroscedastic dropout. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8886–8895 (2018)

    Google Scholar 

  22. Lezama, J., Qiu, Q., Sapiro, G.: Not afraid of the dark: NIR-VIS face recognition via cross-spectral hallucination and low-rank embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6628–6637 (2017)

    Google Scholar 

  23. Li, D., Wei, X., Hong, X., Gong, Y.: Infrared-visible cross-modal person re-identification with an X modality. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4610–4617 (2020)

    Google Scholar 

  24. Liu, H., Cheng, J.: Enhancing the discriminative feature learning for visible-thermal cross-modality person re-identification. CoRR abs/1907.09659 (2019). https://arxiv.org/abs/1907.09659

  25. Liu, H., Ma, S., Xia, D., Li, S.: SFANet: a spectrum-aware feature augmentation network for visible-infrared person re-identification. arXiv preprint arXiv:2102.12137 (2021)

  26. Lu, Y., et al.: Cross-modality person re-identification with shared-specific feature transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13379–13389 (2020)

    Google Scholar 

  27. Mekhazni, D., Bhuiyan, A., Ekladious, G., Granger, E.: Unsupervised domain adaptation in the dissimilarity space for person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 159–174. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_10

    Chapter  Google Scholar 

  28. Nguyen, D.T., Hong, H.G., Kim, K.W., Park, K.R.: Person recognition system based on a combination of body images from visible light and thermal cameras. Sensors 17(3), 605 (2017)

    Article  Google Scholar 

  29. Pande, S., Banerjee, A., Kumar, S., Banerjee, B., Chaudhuri, S.: An adversarial approach to discriminative modality distillation for remote sensing image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  30. Park, H., Lee, S., Lee, J., Ham, B.: Learning by aligning: visible-infrared person re-identification using cross-modal correspondences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12046–12055 (2021)

    Google Scholar 

  31. Pechyony, D., Vapnik, V.: On the theory of learning with privileged information. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  32. Saputra, M.R.U., et al.: DeepTIO: a deep thermal-inertial odometry with visual hallucination. IEEE Robot. Autom. Lett. 5(2), 1672–1679 (2020)

    Article  Google Scholar 

  33. Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. 22(5–6), 544–557 (2009)

    Article  MATH  Google Scholar 

  34. Wang, G.A., et al.: Cross-modality paired-images generation for RGB-infrared person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12144–12151 (2020)

    Google Scholar 

  35. Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z.: RGB-infrared cross-modality person re-identification via joint pixel and feature alignment. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  36. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  37. Wang, Z., Wang, Z., Zheng, Y., Wu, Y., Zeng, W., Satoh, S.: Beyond intra-modality: a survey of heterogeneous person re-identification. arXiv preprint arXiv:1905.10048 (2019)

  38. Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.Y., Satoh, S.: Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 618–626 (2019)

    Google Scholar 

  39. Wu, A., Zheng, W.S., Gong, S., Lai, J.: RGB-IR person re-identification by cross-modality similarity preservation. Int. J. Comput. Vision 128(6), 1765–1785 (2020)

    Article  MathSciNet  Google Scholar 

  40. Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J.: RGB-infrared cross-modality person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5380–5389 (2017)

    Google Scholar 

  41. Wu, Q., et al.: Discover cross-modality nuances for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4330–4339 (2021)

    Google Scholar 

  42. Xu, X., Wu, S., Liu, S., Xiao, G.: Cross-modal based person re-identification via channel exchange and adversarial learning. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 500–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_41

    Chapter  Google Scholar 

  43. Yang, Y., Zhang, T., Cheng, J., Hou, Z., Tiwari, P., Pandey, H.M., et al.: Cross-modality paired-images generation and augmentation for RGB-infrared person re-identification. Neural Networks 128, 294–304 (2020)

    Article  Google Scholar 

  44. Ye, M., Lan, X., Wang, Z., Yuen, P.C.: Bi-directional center-constrained top-ranking for visible thermal person re-identification. IEEE Trans. Inf. Forensics Secur. 15, 407–419 (2020)

    Article  Google Scholar 

  45. Ye, M., Lan, X., Li, J., Yuen, P.: Hierarchical discriminative learning for visible thermal person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  46. Ye, M., Ruan, W., Du, B., Shou, M.Z.: Channel augmented joint learning for visible-infrared recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13567–13576 (2021)

    Google Scholar 

  47. Ye, M., Shen, J., J. Crandall, D., Shao, L., Luo, J.: Dynamic dual-attentive aggregation learning for visible-infrared person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 229–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_14

    Chapter  Google Scholar 

  48. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. arXiv preprint arXiv:2001.04193 (2020)

  49. Ye, M., Shen, J., Shao, L.: Visible-infrared person re-identification via homogeneous augmented tri-modal learning. IEEE Trans. Inf. Forensics Secur. 16, 728–739 (2020)

    Article  Google Scholar 

  50. Zhang, Q., Cheng, H., Lai, J., Xie, X.: DHML: deep heterogeneous metric learning for VIS-NIR person re-identification. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds.) CCBR 2019. LNCS, vol. 11818, pp. 455–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31456-9_50

    Chapter  Google Scholar 

  51. Zhang, Z., Jiang, S., Huang, C., Li, Y., Da, X., R.Y.: RGB-IR cross-modality person ReID based on teacher-student GAN model. Pattern Recogn. Lett. 150, 155–161 (2021)

    Google Scholar 

  52. Zhu, Y., Yang, Z., Wang, L., Zhao, S., Hu, X., Tao, D.: Hetero-center loss for cross-modality person re-identification. Neurocomputing 386, 97–109 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Nuvoola AI Inc., and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Alehdaghi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2351 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alehdaghi, M., Josi, A., Cruz, R.M.O., Granger, E. (2023). Visible-Infrared Person Re-Identification Using Privileged Intermediate Information. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics