iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-25049-1_5
Product Form Solution for the Steady-State Distribution of a Markov Chain Associated with a General Matching Model with Self-loops | SpringerLink
Skip to main content

Product Form Solution for the Steady-State Distribution of a Markov Chain Associated with a General Matching Model with Self-loops

  • Conference paper
  • First Online:
Computer Performance Engineering (EPEW 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13659))

Included in the following conference series:

Abstract

We extend the general matching graph model to deal with matching graph where every node has a self loop. Thus the states on the Markov chain are associated with the independent sets of the matching graph. We prove that under i.i.d. arrivals assumptions the steady-state distribution of the Markov chain has a product form solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mairesse, J., Moyal, P.: Stability of the stochastic matching model. J. Appl. Probab. 53(4), 1064–1077 (2018)

    Article  MATH  Google Scholar 

  2. Gelenbe, E.: Product-form queuing networks with negative and positive customers. J. Appl. Probab. 28, 656–663 (1991)

    Article  MATH  Google Scholar 

  3. Fourneau, J.-M., Gelenbe, E., Suros, R.: G-networks with multiple classes of positive and negative customers. Theoret. Comput. Sci. 155, 141–156 (1996)

    Article  MATH  Google Scholar 

  4. Dao-Thi, T.-H., Fourneau, J.-M., Tran, M.-A.: Network of queues with inert customers and signals. In: 7th International Conference on Performance Evaluation Methodologies and Tools, ValueTools 2013, Italy, pp. 155–164. ICST/ACM (2013)

    Google Scholar 

  5. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: On Petri nets with stochastic timing. In: International Workshop on Timed Petri Nets, Torino, Italy, 1–3 July 1985, pp. 80–87. IEEE Computer Society (1985)

    Google Scholar 

  6. Lazar, A.A., Robertazzi, T.G.: Markovian Petri net protocols with product form solution. Perform. Eval. 12(1), 67–77 (1991)

    Article  Google Scholar 

  7. Haddad, S., Moreaux, P., Sereno, M., Silva, M.: Product-form and stochastic Petri nets: a structural approach. Perform. Eval. 59, 313–336 (2005)

    Article  MATH  Google Scholar 

  8. Moyal, P., Bušić, A., Mairesse, J.: A product form for the general stochastic matching model. J. Appl. Probab. 57(2), 449–468 (2021)

    Article  MATH  Google Scholar 

  9. Cadas, A., Doncel, J., Fourneau, J.-M., Busic, A.: Flexibility can hurt dynamic matching system performance. ACM SIGMETRICS Perform. Eval. Rev. 49(3), 37–42 (2021). IFIP Performance Evaluation (Short Paper)

    Article  Google Scholar 

  10. Bušić, A., Gupta, V., Mairesse, J.: Stability of the bipartite matching model. Adv. Appl. Probab. 45(2), 351–378 (2013)

    Article  MATH  Google Scholar 

  11. Caldentey, R., Kaplan, E.H., Weiss, G.: FCFS infinite bipartite matching of servers and customers. Adv. Appl. Probab. 41(3), 695730 (2009)

    Article  MATH  Google Scholar 

  12. United Network for Organ Sharing. https://unos.org/wp-content/uploads/unos/living_donation_kidneypaired.pdf

  13. Unver, U.: Dynamic kidney exchange. Rev. Econ. Stud. 77(1), 372–414 (2010)

    Article  MATH  Google Scholar 

  14. Ashlagi, I., Jaillet, P., Manshadi, V.H.: Kidney exchange in dynamic sparse heterogenous pools. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC 2013, pp. 25–26. ACM, New York (2013)

    Google Scholar 

  15. Begeot, J., Marcovici, I., Moyal, P., Rahme, Y.: A general stochastic matching model on multigraphs (2020). arXiv preprint https://arxiv.org/abs/2011.05169

  16. Fourneau, J.M., Mahjoub, Y.A.E., Quessette, F., Vekris, D.: XBorne 2016: a brief introduction. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) ISCIS 2016. CCIS, vol. 659, pp. 134–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47217-1_15

    Chapter  Google Scholar 

  17. Cadas, A., Doncel, J., Fourneau, J.-M., Busic, A.: Flexibility can hurt dynamic matching system performance, extended version on arXiv (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Fourneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Busic, A., Cadas, A., Doncel, J., Fourneau, JM. (2023). Product Form Solution for the Steady-State Distribution of a Markov Chain Associated with a General Matching Model with Self-loops. In: Gilly, K., Thomas, N. (eds) Computer Performance Engineering. EPEW 2022. Lecture Notes in Computer Science, vol 13659. Springer, Cham. https://doi.org/10.1007/978-3-031-25049-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25049-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25048-4

  • Online ISBN: 978-3-031-25049-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics