Abstract
The development of foot ulcers is associated with the Diabetic Foot (DF), which is a problem detected in patients with Diabetes Mellitus (DM). Several studies demonstrate that thermography is a technique that can be used to identify and monitor the DF problems, thus helping to analyze the possibility of ulcers arising, as tissue inflammation causes temperature variation.
There is great interest in developing methods to detect abnormal plantar temperature changes, since healthy individuals generally show characteristic patterns of plantar temperature variation and that the plantar temperature distribution of DF tissues does not follow a specific pattern, so temperature variations are difficult to measure. In this sequel, a methodology, that uses thermograms to analyze the diversity of thermal changes that exist in the plant of a foot and classifies it as being from an individual with possibility of ulcer arising or not, is presented in this paper. Therefore, the concept of clustering is used to propose binary classifiers with different descriptors, obtained using two clustering algorithms, to predict the risk of ulceration in a foot. Moreover, for each descriptor, a numerical indicator and a classification thresholder are presented. In addition, using a combination of two different descriptors, a hybrid quantitative indicator is presented. A public dataset (containing 90 thermograms of the sole of the foot healthy people and 244 of DM patients) was used to evaluate the performance of the classifiers; using the hybrid quantitative indicator and the k-means clustering, the following metrics were obtained: Accuracy = 80%, AUC = 87% and F-measure = 86%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Glaudemans, A.W.J.M., Uçkay, I., Lipsky, B.A.: Challenges in diagnosing infection in the diabetic foot. Diabet. Med. 32, 748–759 (2015). https://doi.org/10.1111/dme.12750
Leung, P.: Diabetic foot ulcers - a comprehensive review. Surgeon. 5, 219–231 (2007). https://doi.org/10.1016/S1479-666X(07)80007-2
Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.A., AltamiranoRobles, L.: A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Phys. Technol. 81, 242–249 (2017). https://doi.org/10.1016/j.infrared.2017.01.010
Nagase, T., et al.: Variations of plantar thermographic patterns in normal controls and non-ulcer diabetic patients: novel classification using angiosome concept. J. Plast. Reconstr. Aesthet. Surg. 64, 860–866 (2011). https://doi.org/10.1016/j.bjps.2010.12.003
Mori, T., et al.: Morphological pattern classification system for plantar thermography of patients with diabetes. J. Diabetes Sci. Technol. 7, 1102–1112 (2013). https://doi.org/10.1177/193229681300700502
Pereira, C.B., Yu, X., Dahlmanns, S., Blazek, V., Leohardt, S., Teichmann, D.: Infrared thermography. In: Abreude-Souza, M., Remigio-Gamba, H., Pedrini, H. (eds.) Multi-Modality Imaging, pp. 1–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98974-7_1
Frykberg, R.G., et al.: Diabetic foot disorders: a clinical practice guideline (2006 revision). J. Foot Ankle Surg. 45, S1–S66 (2006). https://doi.org/10.1016/S1067-2516(07)60001-5
Ring, F.: The Herschel heritage to medical thermography. J. Imaging. 2, 13 (2016). https://doi.org/10.3390/jimaging2020013
Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.: Narrative review: diabetic foot and infrared thermography. Infrared Phys. Technol. 78, 105–117 (2016). https://doi.org/10.1016/j.infrared.2016.07.013
Adam, M., Ng, E.Y.K., Tan, J.H., Heng, M.L., Tong, J.W.K., Acharya, U.R.: Computer aided diagnosis of diabetic foot using infrared thermography: a review. Comput. Biol. Med. 91, 326–336 (2017). https://doi.org/10.1016/j.compbiomed.2017.10.030
Hernandez-Contreras, D.A., Peregrina-Barreto, H., Rangel-Magdaleno, J.D.J., Renero-Carrillo, F.J.: Plantar thermogram database for the study of diabetic foot complications. IEEE Access. 7, 161296–161307 (2019). https://doi.org/10.1109/ACCESS.2019.2951356
Macdonald, A., et al.: Thermal symmetry of healthy feet: a precursor to a thermal study of diabetic feet prior to skin breakdown. Physiol. Meas. 38, 33–44 (2017). https://doi.org/10.1088/1361-6579/38/1/33
Macdonald, A., et al.: Between visit variability of thermal imaging of feet in people attending podiatric clinics with diabetic neuropathy at high risk of developing foot ulcers. Physiol. Measur. 40, 084004 (2019). https://doi.org/10.1088/1361-6579/ab36d7
Peregrina-Barreto, H., et al.: Quantitative estimation of temperature variations in plantar angiosomes: a study case for diabetic foot. Comput. Math. Methods Med. 2014, 1–15 (2014). https://doi.org/10.1155/2014/585306
Peregrina-Barreto, H., Morales-Hernandez, L.A., Rangel-Magdaleno, J.J., Vazquez-Rodriguez, P.D.: Thermal image processing for quantitative determination of temperature variations in plantar angiosomes. In: Conference Record - IEEE Instrumentation and Measurement Technology Conference, pp. 816–820 (2013). https://doi.org/10.1109/I2MTC.2013.6555528
Filipe, V., Teixeira, P., Teixeira, A.: A clustering approach for prediction of diabetic foot using thermal images. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2020. LNCS, vol. 12251, pp. 620–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_45
Filipe, V., Teixeira, P., Teixeira, A.: Measuring plantar temperature changes in thermal images using basic statistical descriptors. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2021. LNCS, vol. 12953, pp. 445–455. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_30
Omran, M.G.H., Engelbrecht, A.P., Salman, A.: An overview of clustering methods. Intell. Data Anal. 11, 583–605 (2007). https://doi.org/10.3233/ida-2007-11602
Ben Ayed, A., Ben Halima, M., Alimi, A.M.: Adaptive fuzzy exponent cluster ensemble system based feature selection and spectral clustering. In: IEEE International Conference on Fuzzy Systems (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015721
(PDF) Survey on clustering methods : Towards fuzzy clustering for big data (n.d.). https://www.researchgate.net/publication/280730634_Survey_on_clustering_methods_Towards_fuzzy_clustering_for_big_data. Accessed 24 Mar 2021
Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data: Recent Advances in Clustering, , pp. 25–71. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28349-8_2
Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Proc. Comput. Sci. 54, 764–771 (2015). https://doi.org/10.1016/j.procs.2015.06.090
Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z
Tremblay, N., Loukas, A.: Approximating spectral clustering via sampling: a review. In: Ros, F., Guillaume, S. (eds.) Sampling Techniques for Supervised or Unsupervised Tasks. USL, pp. 129–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29349-9_5
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000). https://doi.org/10.1109/34.868688
Ng, A.Y., Jordan, M.I.: On Spectral Clustering: Analysis and an algorithm (2001)
Wang, X., Qian, B., Davidson, I.: On constrained spectral clustering and its applications. Data Min. Knowl. Disc. 28(1), 1–30 (2012). https://doi.org/10.1007/s10618-012-0291-9
Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging. 15, 1–28 (2015). https://doi.org/10.1186/s12880-015-0068-x
Unal, I.: Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput. Math. Methods Med. 2017, 3762651 (2017). https://doi.org/10.1155/2017/3762651
Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation, Caspian. J. Intern. Med. 4, 627–635 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Filipe, V., Teixeira, P., Teixeira, A. (2022). Two Clustering Methods for Measuring Plantar Temperature Changes in Thermal Images. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-23236-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23235-0
Online ISBN: 978-3-031-23236-7
eBook Packages: Computer ScienceComputer Science (R0)