iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-23236-7_19
Two Clustering Methods for Measuring Plantar Temperature Changes in Thermal Images | SpringerLink
Skip to main content

Two Clustering Methods for Measuring Plantar Temperature Changes in Thermal Images

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2022)

Abstract

The development of foot ulcers is associated with the Diabetic Foot (DF), which is a problem detected in patients with Diabetes Mellitus (DM). Several studies demonstrate that thermography is a technique that can be used to identify and monitor the DF problems, thus helping to analyze the possibility of ulcers arising, as tissue inflammation causes temperature variation.

There is great interest in developing methods to detect abnormal plantar temperature changes, since healthy individuals generally show characteristic patterns of plantar temperature variation and that the plantar temperature distribution of DF tissues does not follow a specific pattern, so temperature variations are difficult to measure. In this sequel, a methodology, that uses thermograms to analyze the diversity of thermal changes that exist in the plant of a foot and classifies it as being from an individual with possibility of ulcer arising or not, is presented in this paper. Therefore, the concept of clustering is used to propose binary classifiers with different descriptors, obtained using two clustering algorithms, to predict the risk of ulceration in a foot. Moreover, for each descriptor, a numerical indicator and a classification thresholder are presented. In addition, using a combination of two different descriptors, a hybrid quantitative indicator is presented. A public dataset (containing 90 thermograms of the sole of the foot healthy people and 244 of DM patients) was used to evaluate the performance of the classifiers; using the hybrid quantitative indicator and the k-means clustering, the following metrics were obtained: Accuracy = 80%, AUC = 87% and F-measure = 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glaudemans, A.W.J.M., Uçkay, I., Lipsky, B.A.: Challenges in diagnosing infection in the diabetic foot. Diabet. Med. 32, 748–759 (2015). https://doi.org/10.1111/dme.12750

    Article  Google Scholar 

  2. Leung, P.: Diabetic foot ulcers - a comprehensive review. Surgeon. 5, 219–231 (2007). https://doi.org/10.1016/S1479-666X(07)80007-2

    Article  Google Scholar 

  3. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.A., AltamiranoRobles, L.: A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Phys. Technol. 81, 242–249 (2017). https://doi.org/10.1016/j.infrared.2017.01.010

    Article  Google Scholar 

  4. Nagase, T., et al.: Variations of plantar thermographic patterns in normal controls and non-ulcer diabetic patients: novel classification using angiosome concept. J. Plast. Reconstr. Aesthet. Surg. 64, 860–866 (2011). https://doi.org/10.1016/j.bjps.2010.12.003

    Article  Google Scholar 

  5. Mori, T., et al.: Morphological pattern classification system for plantar thermography of patients with diabetes. J. Diabetes Sci. Technol. 7, 1102–1112 (2013). https://doi.org/10.1177/193229681300700502

    Article  Google Scholar 

  6. Pereira, C.B., Yu, X., Dahlmanns, S., Blazek, V., Leohardt, S., Teichmann, D.: Infrared thermography. In: Abreude-Souza, M., Remigio-Gamba, H., Pedrini, H. (eds.) Multi-Modality Imaging, pp. 1–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98974-7_1

    Chapter  Google Scholar 

  7. Frykberg, R.G., et al.: Diabetic foot disorders: a clinical practice guideline (2006 revision). J. Foot Ankle Surg. 45, S1–S66 (2006). https://doi.org/10.1016/S1067-2516(07)60001-5

  8. Ring, F.: The Herschel heritage to medical thermography. J. Imaging. 2, 13 (2016). https://doi.org/10.3390/jimaging2020013

  9. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.: Narrative review: diabetic foot and infrared thermography. Infrared Phys. Technol. 78, 105–117 (2016). https://doi.org/10.1016/j.infrared.2016.07.013

    Article  Google Scholar 

  10. Adam, M., Ng, E.Y.K., Tan, J.H., Heng, M.L., Tong, J.W.K., Acharya, U.R.: Computer aided diagnosis of diabetic foot using infrared thermography: a review. Comput. Biol. Med. 91, 326–336 (2017). https://doi.org/10.1016/j.compbiomed.2017.10.030

    Article  Google Scholar 

  11. Hernandez-Contreras, D.A., Peregrina-Barreto, H., Rangel-Magdaleno, J.D.J., Renero-Carrillo, F.J.: Plantar thermogram database for the study of diabetic foot complications. IEEE Access. 7, 161296–161307 (2019). https://doi.org/10.1109/ACCESS.2019.2951356

    Article  Google Scholar 

  12. Macdonald, A., et al.: Thermal symmetry of healthy feet: a precursor to a thermal study of diabetic feet prior to skin breakdown. Physiol. Meas. 38, 33–44 (2017). https://doi.org/10.1088/1361-6579/38/1/33

    Article  Google Scholar 

  13. Macdonald, A., et al.: Between visit variability of thermal imaging of feet in people attending podiatric clinics with diabetic neuropathy at high risk of developing foot ulcers. Physiol. Measur. 40, 084004 (2019). https://doi.org/10.1088/1361-6579/ab36d7

  14. Peregrina-Barreto, H., et al.: Quantitative estimation of temperature variations in plantar angiosomes: a study case for diabetic foot. Comput. Math. Methods Med. 2014, 1–15 (2014). https://doi.org/10.1155/2014/585306

  15. Peregrina-Barreto, H., Morales-Hernandez, L.A., Rangel-Magdaleno, J.J., Vazquez-Rodriguez, P.D.: Thermal image processing for quantitative determination of temperature variations in plantar angiosomes. In: Conference Record - IEEE Instrumentation and Measurement Technology Conference, pp. 816–820 (2013). https://doi.org/10.1109/I2MTC.2013.6555528

  16. Filipe, V., Teixeira, P., Teixeira, A.: A clustering approach for prediction of diabetic foot using thermal images. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2020. LNCS, vol. 12251, pp. 620–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_45

    Chapter  Google Scholar 

  17. Filipe, V., Teixeira, P., Teixeira, A.: Measuring plantar temperature changes in thermal images using basic statistical descriptors. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2021. LNCS, vol. 12953, pp. 445–455. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_30

    Chapter  Google Scholar 

  18. Omran, M.G.H., Engelbrecht, A.P., Salman, A.: An overview of clustering methods. Intell. Data Anal. 11, 583–605 (2007). https://doi.org/10.3233/ida-2007-11602

    Article  Google Scholar 

  19. Ben Ayed, A., Ben Halima, M., Alimi, A.M.: Adaptive fuzzy exponent cluster ensemble system based feature selection and spectral clustering. In: IEEE International Conference on Fuzzy Systems (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015721

  20. (PDF) Survey on clustering methods : Towards fuzzy clustering for big data (n.d.). https://www.researchgate.net/publication/280730634_Survey_on_clustering_methods_Towards_fuzzy_clustering_for_big_data. Accessed 24 Mar 2021

  21. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data: Recent Advances in Clustering, , pp. 25–71. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28349-8_2

  22. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Proc. Comput. Sci. 54, 764–771 (2015). https://doi.org/10.1016/j.procs.2015.06.090

    Article  Google Scholar 

  23. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  24. Tremblay, N., Loukas, A.: Approximating spectral clustering via sampling: a review. In: Ros, F., Guillaume, S. (eds.) Sampling Techniques for Supervised or Unsupervised Tasks. USL, pp. 129–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29349-9_5

    Chapter  MATH  Google Scholar 

  25. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  26. Ng, A.Y., Jordan, M.I.: On Spectral Clustering: Analysis and an algorithm (2001)

    Google Scholar 

  27. Wang, X., Qian, B., Davidson, I.: On constrained spectral clustering and its applications. Data Min. Knowl. Disc. 28(1), 1–30 (2012). https://doi.org/10.1007/s10618-012-0291-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging. 15, 1–28 (2015). https://doi.org/10.1186/s12880-015-0068-x

  29. Unal, I.: Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput. Math. Methods Med. 2017, 3762651 (2017). https://doi.org/10.1155/2017/3762651

  30. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation, Caspian. J. Intern. Med. 4, 627–635 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filipe, V., Teixeira, P., Teixeira, A. (2022). Two Clustering Methods for Measuring Plantar Temperature Changes in Thermal Images. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23236-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23235-0

  • Online ISBN: 978-3-031-23236-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics