iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-22695-3_33
Machine Learning Inspired Fault Detection of Dynamical Networks | SpringerLink
Skip to main content

Machine Learning Inspired Fault Detection of Dynamical Networks

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

Dynamical networks are a framework commonly used to model large networks of interacting time-varying components such as power grids and epidemic disease networks. The connectivity structure of dynamical networks play a key role in enabling many interesting behaviours such as synchronisation and chimeras. However, dynamical networks can also be vulnerable to network attack, where the connectivity structure is externally altered. This can cause sudden failure and loss of stability in the network. The ability to detect these network attacks is useful in troubleshooting and preventing system failure. Recently, a backpropagation regression method inspired by RNN training algorithms was proposed to infer both local node dynamics and connectivity structure from measured node signals. This paper explores the application of backpropagation regression for fault detection in dynamical networks. We construct separate models for local dynamics and coupling structure to perform short-term freerun predictions. Due to the separation of models, abnormal increases in prediction error can be attributed to changes in the network structure. Automatic detection is achieved by comparing prediction error statistics across two windows that span a period before and after a network attack. This method is tested on a simulated dynamical network of chaotic Lorenz oscillators undergoing gradual edge corruption via three different processes: edge swapping, moving and deletion. We demonstrate that the correlation between increased prediction error and the occurrence of edge corruption can be used to reliably detect both the onset and approximate location of the attack within the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102 (2004)

    Article  Google Scholar 

  2. Andreev, A., Frolov, N., Pisarchik, A., Hramov, A.: Chimera state in complex networks of bistable Hodgkin-Huxley neurons. Phys. Rev. E 100(2), 022224 (2019)

    Article  Google Scholar 

  3. Banerjee, A., Hart, J.D., Roy, R., Ott, E.: Machine learning link inference of noisy delay-coupled networks with optoelectronic experimental tests. Phys. Rev. X 11(3), 031014 (2021)

    Google Scholar 

  4. Banerjee, A., Pathak, J., Roy, R., Restrepo, J.G., Ott, E.: Using machine learning to assess short term causal dependence and infer network links. Chaos Interdisc. J. Nonlinear Sci. 29(12), 121104 (2019)

    Google Scholar 

  5. Casadiego, J., Nitzan, M., Hallerberg, S., Timme, M.: Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8(1), 1–10 (2017)

    Article  Google Scholar 

  6. Dashtdar, M., Dashti, R., Shaker, H.R.: Distribution network fault section identification and fault location using artificial neural network. In: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), pp. 273–278. IEEE (2018)

    Google Scholar 

  7. Eroglu, D., Tanzi, M., van Strien, S., Pereira, T.: Revealing dynamics, communities, and criticality from data. Phys. Rev. X 10(2), 021047 (2020)

    Google Scholar 

  8. Hota, A.R., Sneh, T., Gupta, K.: Impacts of game-theoretic activation on epidemic spread over dynamical networks. SIAM J. Control. Optim. 60(2), S92–S118 (2021)

    Article  MATH  Google Scholar 

  9. Izhikevich, E.M.: Dynamical systems in neuroscience. MIT press (2007)

    Google Scholar 

  10. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology Gesellschaft für Mathematik und Datenverarbeitung mbH (GMD) Technical Report 148, 13 (2001)

    Google Scholar 

  11. Kohar, V., Sinha, S.: Emergence of epidemics in rapidly varying networks. Chaos Solitons Fractals 54, 127–134 (2013)

    Article  Google Scholar 

  12. Kornilov, M., Sysoev, I., Astakhova, D., Kulminsky, D., Bezruchko, B., Ponomarenko, V.: Reconstruction of the coupling architecture in the ensembles of radio-engineering oscillators by their signals using the methods of granger causality and partial directed coherence. Radiophys. Quantum Electron. 63(7), 542–556 (2020)

    Article  Google Scholar 

  13. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MATH  Google Scholar 

  14. Majdandzic, A., et al.: Multiple tipping points and optimal repairing in interacting networks. Nat. Commun. 7(1), 1–10 (2016)

    Google Scholar 

  15. Masuda, N., Lambiotte, R.: A guide to temporal networks. World Scientific (2016)

    Google Scholar 

  16. Muhammed, T., Shaikh, R.A.: An analysis of fault detection strategies in wireless sensor networks. J. Netw. Comput. Appl. 78, 267–287 (2017)

    Article  Google Scholar 

  17. Napoletani, D., Sauer, T.D.: Reconstructing the topology of sparsely connected dynamical networks. Phys. Rev. E 77(2), 026103 (2008)

    Article  Google Scholar 

  18. Pasqualetti, F., Dörfler, F., Bullo, F.: Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Contr. 58(11), 2715–2729 (2013)

    Article  MATH  Google Scholar 

  19. Rosenblum, M., Frühwirth, M., Moser, M., Pikovsky, A.: Dynamical disentanglement in an analysis of oscillatory systems: an application to respiratory sinus arrhythmia. Phil. Trans. R. Soc. A 377(2160), 20190045 (2019)

    Article  MATH  Google Scholar 

  20. Sachtjen, M., Carreras, B., Lynch, V.: Disturbances in a power transmission system. Phys. Rev. E 61(5), 4877 (2000)

    Article  Google Scholar 

  21. Shandilya, S.G., Timme, M.: Inferring network topology from complex dynamics. New J. Phys. 13(1), 013004 (2011)

    Article  MATH  Google Scholar 

  22. Small, M., Tse, C.K.: Minimum description length neural networks for time series prediction. Phys. Rev. E 66(6), 066701 (2002)

    Article  Google Scholar 

  23. Stepaniants, G., Brunton, B.W., Kutz, J.N.: Inferring causal networks of dynamical systems through transient dynamics and perturbation. Phys. Rev. E 102(4), 042309 (2020)

    Article  Google Scholar 

  24. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  25. Tan, E., Corrêa, D., Stemler, T., Small, M.: Backpropagation on dynamical networks. arXiv preprint arXiv:2207.03093 (2022)

  26. Valencia, M., Martinerie, J., Dupont, S., Chavez, M.: Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys. Rev. E 77(5), 050905 (2008)

    Article  Google Scholar 

  27. Wang, J., Rong, L., Zhang, L., Zhang, Z.: Attack vulnerability of scale-free networks due to cascading failures. Physica A 387(26), 6671–6678 (2008)

    Article  Google Scholar 

  28. Wang, W.X., Lai, Y.C., Grebogi, C.: Data based identification and prediction of nonlinear and complex dynamical systems. Phys. Rep. 644, 1–76 (2016)

    Article  MATH  Google Scholar 

  29. Weistuch, C., Agozzino, L., Mujica-Parodi, L.R., Dill, K.A.: Inferring a network from dynamical signals at its nodes. PLoS Comput. Biol. 16(11), e1008435 (2020)

    Google Scholar 

  30. Wu, B., Zhou, D., Fu, F., Luo, Q., Wang, L., Traulsen, A.: Evolution of cooperation on stochastic dynamical networks. PLoS ONE 5(6), e11187 (2010)

    Article  Google Scholar 

  31. Wu, H.S.: A survey of research on anomaly detection for time series. In: 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 426–431. IEEE (2016)

    Google Scholar 

  32. Xia, Y., Fan, J., Hill, D.: Cascading failure in Watts-Strogatz small-world networks. Physica A 389(6), 1281–1285 (2010)

    Article  Google Scholar 

  33. Xia, Y., Hill, D.J.: Attack vulnerability of complex communication networks. IEEE Trans. Circuits Syst. II Express Briefs 55(1), 65–69 (2008)

    Google Scholar 

  34. Yang, L.X., Jiang, J.: Impacts of link addition and removal on synchronization of an elementary power network. Physica A 479, 99–107 (2017)

    Article  MATH  Google Scholar 

  35. Zenisek, J., Holzinger, F., Affenzeller, M.: Machine learning based concept drift detection for predictive maintenance. Comput. Ind. Eng. 137, 106031 (2019)

    Article  Google Scholar 

  36. Zhang, J.S., Xiao, X.C.: Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett. 17(2), 88 (2000)

    Article  Google Scholar 

  37. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6(1), 1–23 (2019). https://doi.org/10.1186/s40649-019-0069-y

    Article  Google Scholar 

  38. Zhu, Y., Zheng, Z., Yang, J.: Chimera states on complex networks. Phys. Rev. E 89(2), 022914 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

E.T. is supported by a Robert and Maude Gledden Postgraduate Research Scholarship and Australian Government Research Training Program Scholarship at The University of Western Australia. M.S. and D.C.C. acknowledge the support of the Australian Research Council through the Centre for Transforming Maintenance through Data Science (grant number IC180100030), funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, E., Corrêa, D.C., Stemler, T., Small, M. (2022). Machine Learning Inspired Fault Detection of Dynamical Networks. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics