iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19992-9_21
STOMPC: Stochastic Model-Predictive Control with Uppaal Stratego | SpringerLink
Skip to main content

STOMPC: Stochastic Model-Predictive Control with Uppaal Stratego

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2022)

Abstract

We present the new co-simulation and synthesis integrated-framework STOMPC for stochastic model-predictive control (MPC) with Uppaal Stratego . The framework allows users to easily set up MPC designs, a widely accepted method for designing software controllers in industry, with Uppaal Stratego as the controller synthesis engine, which provides a powerful tool to synthesize safe and optimal strategies for hybrid stochastic systems. STOMPC provides the user freedom to connect it to external simulators, making the framework applicable across multiple domains.

This work is partly supported by the Villum Synergy project CLAIRE and the ERC Advanced Grant LASSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/DEIS-Tools/strategoutil.

  2. 2.

    https://strategoutil.readthedocs.io/en/latest/.

  3. 3.

    https://doi.org/10.5281/zenodo.6519909.

  4. 4.

    https://strategoutil.readthedocs.io.

References

  1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive systems. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035748

    Chapter  Google Scholar 

  2. Agesen, M., et al.: Toolchain for user-centered intelligent floor heating control. In: IECON, pp. 5296–5301. IEEE (2016). https://doi.org/10.1109/IECON.2016.7794040

  3. Ashok, P., Křetínský, J., Larsen, K.G., Le Coënt, A., Taankvist, J.H., Weininger, M.: SOS: safe, optimal and small strategies for hybrid Markov decision processes. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 147–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_9

    Chapter  Google Scholar 

  4. Camacho, E.F., Alba, C.B.: Model Predictive Control. Springer, Heidelberg (2013)

    Google Scholar 

  5. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

    Chapter  Google Scholar 

  6. Eriksen, A., Lahrmann, H., Larsen, K., Taankvist, J.: Controlling signalized intersections using machine learning. Transp. Res. Proc. 48, 987–997 (2020). https://doi.org/10.1016/j.trpro.2020.08.127

    Article  Google Scholar 

  7. García, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice - a survey. Automatica 25(3), 335–348 (1989). https://doi.org/10.1016/0005-1098(89)90002-2

    Article  MATH  Google Scholar 

  8. Goorden, M.A., Larsen, K.G., Nielsen, J.E., Nielsen, T.D., Rasmussen, M.R., Srba, J.: Learning safe and optimal control strategies for storm water detention ponds. IFAC-PapersOnLine 54(5), 13–18 (2021). https://doi.org/10.1016/j.ifacol.2021.08.467

    Article  Google Scholar 

  9. Huber, W.C., Rossman, L.A., Dickinson, R.E.: EPA storm water management model, SWMM5. Watershed Models 338, 359 (2005)

    Google Scholar 

  10. Jaeger, M., Jensen, P.G., Guldstrand Larsen, K., Legay, A., Sedwards, S., Taankvist, J.H.: Teaching stratego to play ball: optimal synthesis for continuous space MDPs. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 81–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_5

    Chapter  Google Scholar 

  11. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online and compositional learning of controllers with application to floor heating. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_14

    Chapter  Google Scholar 

  12. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_17

    Chapter  Google Scholar 

  13. McDonnell, B.E., Ratliff, K., Tryby, M.E., Wu, J.J.X., Mullapudi, A.: PySWMM: the python interface to stormwater management model (SWMM). J. Open Sour. Softw. 5(52), 2292 (2020). https://doi.org/10.21105/joss.02292

  14. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035790

    Chapter  Google Scholar 

  15. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM J. Control. Optim. 25(1), 206–230 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn A. Goorden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goorden, M.A., Jensen, P.G., Larsen, K.G., Samusev, M., Srba, J., Zhao, G. (2022). STOMPC: Stochastic Model-Predictive Control with Uppaal Stratego. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19992-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19991-2

  • Online ISBN: 978-3-031-19992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics