Abstract
We study difficulties that appear when well-established definitions and results in Euclidean geometry, especially in the theory of convex sets and functions in vector spaces, are translated into a discrete setting. Solutions to these problems are sketched.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kiselman, C.O.: Elements of Digital Geometry, Mathematical Morphology, and Discrete Optimization, xxiv + 461 p. World Scientific, Singapore (2022)
Matheron, G.: Random Sets and Integral Geometry, xxiii + 261 p. (1975)
Matheron, G., Serra, J.: The birth of mathematical morphology. In: Talbot, H., Beare, R. (eds.), Mathematical Morphology. Proceedings of the Vi\(^{th}\) International Symposium-ISMM 2002. Sydney, 3–5 April 2002, pp. xii + 441 9. Collingwood VIC CSIRO Publishing (2002)
Najman, L., Talbot, H.: Introduction à la morphologie mathématique. In: Najman, L., Talbot, H. (eds.), vol. 2008, pp. 19–45 (2008)
Najman, L., Talbot, H. (eds.) : Introduction à la morphologie mathématique. 1. Approches déterministes, 264 p. Paris, Lavoisier (2008)
Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Strasbourg. Université Louis Pasteur. Thèse d’État presented on 1991 December 20 (1991)
Serra, J.: Image Analysis and Mathematical Morphology, xviii + 461 p. Academic Press, London et al. (1982)
Serra, J., (ed.): Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances, xvii + 411 p. London et al. Academic Press (1988)
Talbot, H., Beare, R.: Mathematical Morphology. In: Proceedings of the VI\(^{th}\) International Symposium–ISMM 2002. Sydney, 3–5 April 2002, xii + 441 p. Collingwood VIC CSIRO Publishing (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kiselman, C.O. (2022). Digital Geometry, Mathematical Morphology, and Discrete Optimization: A Survey. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)