iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19897-7_20
Component Tree Loss Function: Definition and Optimization | SpringerLink
Skip to main content

Component Tree Loss Function: Definition and Optimization

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Abstract

In this article, we propose a method for designing loss functions based on component trees that can be optimized by gradient descent algorithms and are therefore usable in conjunction with recent machine learning approaches such as neural networks. The nodes of this tree are the connected components of the upper level sets of an image and the leaves represent the regional maxima (or regional minima if the dual tree is considered) of the image, i.e., connected sets of bright pixels surrounded by darker pixels. The proposed loss function is thus defined at the level of connected components rather than at the level of individual pixels, which allows for the optimization of higher semantic level quantities such as topological features. We show how the altitudes associated with the nodes of such hierarchical image representations can be differentiated with respect to the values of the image pixels. This property is used to design a generic loss function that can select or discard image maxima based on various attributes, such as extinction values based on the contrast or the size of the maxima. The possibilities of the proposed method are demonstrated on simulated and real image filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.esiee.fr/~perretb/notebooks/Component_Tree_Loss.zip.

  2. 2.

    https://github.com/bruel-gabrielsson/TopologyLayer.

References

  1. Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. In: ESAIM: Control, Optimisation and Calculus of Variations, vol. 9, pp. 1–18 (2003)

    Google Scholar 

  2. Boutry, N., Géraud, T., Najman, L.: An equivalence relation between morphological dynamics and persistent homology in 1D. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds.) ISMM 2019. LNCS, vol. 11564, pp. 57–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20867-7_5

    Chapter  MATH  Google Scholar 

  3. Chierchia, G., Perret, B.: Ultrametric fitting by gradient descent. In: NeurIPS, pp. 3181–3192 (2019)

    Google Scholar 

  4. Clough, J., Byrne, N., Oksuz, I., Zimmer, V., Schnabel, J., King, A.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE TPAMI (2020)

    Google Scholar 

  5. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  6. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8_24

    Chapter  MATH  Google Scholar 

  7. Dalla Mura, M., Benediktsson, J., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE TGRS 48(10), 3747–3762 (2010)

    Google Scholar 

  8. Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: IEEE CVPR, vol. 1, pp. 553–560 (2006)

    Google Scholar 

  9. Gabrielsson, R., Nelson, B., Dwaraknath, A., Skraba, P.: A topology layer for machine learning. In: AISTATS, pp. 1553–1563. PMLR (2020)

    Google Scholar 

  10. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_9

    Chapter  MATH  Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE CVPR, pp. 580–587 (2014)

    Google Scholar 

  12. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: NeurIPS, pp. 5657–5668 (2019)

    Google Scholar 

  13. Jones, R.: Connected filtering and segmentation using component trees. CVIU 75(3), 215–228 (1999)

    Google Scholar 

  14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)

    Google Scholar 

  15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8026–8037 (2019)

    Google Scholar 

  16. Perret, B., Chierchia, G., Cousty, J., Guimarães, S., Kenmochi, Y., Najman, L.: Higra: hierarchical graph analysis. SoftwareX 10, 100335 (2019)

    Google Scholar 

  17. Perret, B., Cousty, J., Guimaraes, S., Maia, D.: Evaluation of hierarchical watersheds. IEEE TIP 27(4), 1676–1688 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Robic, J., Perret, B., Nkengne, A., Couprie, M., Talbot, H.: Self-dual pattern spectra for characterising the dermal-epidermal junction in 3D reflectance confocal microscopy imaging. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds.) ISMM 2019. LNCS, vol. 11564, pp. 508–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20867-7_39

    Chapter  Google Scholar 

  19. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE TIP 7(4), 555–570 (1998)

    Google Scholar 

  20. Teeninga, P., Moschini, U., Trager, S., Wilkinson, M.: Statistical attribute filtering to detect faint extended astronomical sources. Math. Morphol.-Theory Appl. 1 (2016)

    Google Scholar 

  21. Vachier, C., Meyer, F.: Extinction value: a new measurement of persistence. In: IEEE Workshop on Nonlinear Signal and Image Processing, vol. 1, pp. 254–257 (1995)

    Google Scholar 

  22. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE TPAMI 39(3), 457–469 (2016)

    Article  Google Scholar 

  23. Xu, Y., Monasse, P., Géraud, T., Najman, L.: Tree-based Morse regions: a topological approach to local feature detection. IEEE TIP 23(12), 5612–5625 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the French ANR grant ANR-20-CE23-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Perret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perret, B., Cousty, J. (2022). Component Tree Loss Function: Definition and Optimization. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics