iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19897-7_19
Component-Tree Simplification Through Fast Alpha Cuts | SpringerLink
Skip to main content

Component-Tree Simplification Through Fast Alpha Cuts

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

  • 407 Accesses

Abstract

Tree-based hierarchical image representations are commonly used in connected morphological image filtering, segmentation and multi-scale analysis. In the case of component trees, filtering is generally based on thresholding single attributes computed for all the nodes in the tree. Alternatively, so-called shapings are used, which rely on building a component tree of a component tree to filter the image. Neither method is practical when using vector attributes. In this case, more complicated machine learning methods are required, including clustering methods. In this paper I present a simple, fast hierarchical clustering algorithm based on cuts of \(\alpha \)-trees to simplify and filter component trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  2. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995)

    Article  Google Scholar 

  3. Heijmans, H.J.A.M.: Connected morphological operators for binary images. Comput. Vis. Image Underst. 73, 99–120 (1999)

    Article  Google Scholar 

  4. Klein, J.C.: Conception et réalisation d’une unité logique pour l’analyse quantitative d’images. Ph.D. thesis, Nancy University, France (1976)

    Google Scholar 

  5. Cheng, F., Venetsanopoulos, A.N.: An adaptive morphological filter for image processing. IEEE Trans. Image Proc. 1, 533–539 (1992)

    Article  Google Scholar 

  6. Vincent, L.: Morphological area openings and closings for grey-scale images. In: O, Y.L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Picture: Mathematical Description of Shape in Grey-level Images, pp. 197–208. NATO (1993)

    Google Scholar 

  7. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)

    Article  Google Scholar 

  8. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9(4), 561–576 (2000)

    Article  Google Scholar 

  9. Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Underst. 75, 215–228 (1999)

    Article  Google Scholar 

  10. Ouzounis, G.K., Soille, P.: The Alpha-Tree Algorithm. Publications Office of the European Union (2012)

    Google Scholar 

  11. Bosilj, P., Kijak, E., Lefèvre, S.: Partition and inclusion hierarchies of images: a comprehensive survey. J. Imaging 4(2), 33 (2018)

    Article  Google Scholar 

  12. Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)

    Article  Google Scholar 

  13. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007)

    Article  Google Scholar 

  14. Wilkinson, M.H.F., Pesaresi, M., Ouzounis, G.K.: An efficient parallel algorithm for multi-scale analysis of connected components in gigapixel images. ISPRS Int. J. Geo-Inf. 5(3), 22 (2016)

    Article  Google Scholar 

  15. Kiwanuka, F.N., Wilkinson, M.H.F.: Automatic attribute threshold selection for blood vessel enhancement. In: Proceedings of the 20th International Conference Pattern Recognition, pp. 314–2317 (2010)

    Google Scholar 

  16. Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2016)

    Article  Google Scholar 

  17. Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector-attribute filters. In: Mathematical Morphology: 40 Years on, Proceedings International Symposium Mathematical Morphology (ISMM), Paris, 18–20 April 2005, pp. 95–104 (2005)

    Google Scholar 

  18. Soille, P.: Constrained connectivity and connected filters. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  19. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Proceedings of the International Symposium on Mathematical Morphology (ISMM), pp. 239–250 (2007)

    Google Scholar 

  20. Gazagnes, S., Wilkinson, M.H.F.: Distributed component forests in 2-D: hierarchical image representations suitable for tera-scale images. Int. J. Pattern Recogn. Artif. Intell. 33(11), 1940012 (2019)

    Google Scholar 

  21. Maragos, P., Ziff, R.D.: Threshold decomposition in morphological image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990)

    Article  Google Scholar 

  22. Kiwanuka, F.N., Wilkinson, M.H.F.: Cluster based vector attribute filtering. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 277–288. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_24

    Chapter  Google Scholar 

  23. Soille, P., Najman, L.: On morphological hierarchical representations for image processing and spatial data clustering. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 43–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32313-3_4

    Chapter  Google Scholar 

  24. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Proc. 23(9), 3885–3895 (2014)

    Article  MathSciNet  Google Scholar 

  25. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007)

    Article  MathSciNet  Google Scholar 

  26. Young, N., Evans, A.N.: Psychovisually tuned attribute operators for pre-processing digital video. IEE Proc. Vis. Image Signal Process. 150(5), 277–286 (2003)

    Article  Google Scholar 

  27. Tushabe, F.B.: Extending attribute filters to color processing and multi-media applications. Ph.D. thesis, University of Groningen (2010)

    Google Scholar 

  28. du Buf, H., et al.: Diatom identification: a double challenge called ADIAC. In: Proceedings ICIAP, Venice, pp. 734–739 (1999)

    Google Scholar 

  29. Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and analysis in 2D and 3D tera-scale data sets. IEEE Trans. Image Proc. 30, 3664–3675 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. F. Wilkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilkinson, M.H.F. (2022). Component-Tree Simplification Through Fast Alpha Cuts. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics