Abstract
Tree-based hierarchical image representations are commonly used in connected morphological image filtering, segmentation and multi-scale analysis. In the case of component trees, filtering is generally based on thresholding single attributes computed for all the nodes in the tree. Alternatively, so-called shapings are used, which rely on building a component tree of a component tree to filter the image. Neither method is practical when using vector attributes. In this case, more complicated machine learning methods are required, including clustering methods. In this paper I present a simple, fast hierarchical clustering algorithm based on cuts of \(\alpha \)-trees to simplify and filter component trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26(6), 136–157 (2009)
Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995)
Heijmans, H.J.A.M.: Connected morphological operators for binary images. Comput. Vis. Image Underst. 73, 99–120 (1999)
Klein, J.C.: Conception et réalisation d’une unité logique pour l’analyse quantitative d’images. Ph.D. thesis, Nancy University, France (1976)
Cheng, F., Venetsanopoulos, A.N.: An adaptive morphological filter for image processing. IEEE Trans. Image Proc. 1, 533–539 (1992)
Vincent, L.: Morphological area openings and closings for grey-scale images. In: O, Y.L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Picture: Mathematical Description of Shape in Grey-level Images, pp. 197–208. NATO (1993)
Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)
Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9(4), 561–576 (2000)
Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Underst. 75, 215–228 (1999)
Ouzounis, G.K., Soille, P.: The Alpha-Tree Algorithm. Publications Office of the European Union (2012)
Bosilj, P., Kijak, E., Lefèvre, S.: Partition and inclusion hierarchies of images: a comprehensive survey. J. Imaging 4(2), 33 (2018)
Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)
Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007)
Wilkinson, M.H.F., Pesaresi, M., Ouzounis, G.K.: An efficient parallel algorithm for multi-scale analysis of connected components in gigapixel images. ISPRS Int. J. Geo-Inf. 5(3), 22 (2016)
Kiwanuka, F.N., Wilkinson, M.H.F.: Automatic attribute threshold selection for blood vessel enhancement. In: Proceedings of the 20th International Conference Pattern Recognition, pp. 314–2317 (2010)
Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2016)
Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector-attribute filters. In: Mathematical Morphology: 40 Years on, Proceedings International Symposium Mathematical Morphology (ISMM), Paris, 18–20 April 2005, pp. 95–104 (2005)
Soille, P.: Constrained connectivity and connected filters. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)
Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Proceedings of the International Symposium on Mathematical Morphology (ISMM), pp. 239–250 (2007)
Gazagnes, S., Wilkinson, M.H.F.: Distributed component forests in 2-D: hierarchical image representations suitable for tera-scale images. Int. J. Pattern Recogn. Artif. Intell. 33(11), 1940012 (2019)
Maragos, P., Ziff, R.D.: Threshold decomposition in morphological image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990)
Kiwanuka, F.N., Wilkinson, M.H.F.: Cluster based vector attribute filtering. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 277–288. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_24
Soille, P., Najman, L.: On morphological hierarchical representations for image processing and spatial data clustering. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 43–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32313-3_4
Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Proc. 23(9), 3885–3895 (2014)
Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007)
Young, N., Evans, A.N.: Psychovisually tuned attribute operators for pre-processing digital video. IEE Proc. Vis. Image Signal Process. 150(5), 277–286 (2003)
Tushabe, F.B.: Extending attribute filters to color processing and multi-media applications. Ph.D. thesis, University of Groningen (2010)
du Buf, H., et al.: Diatom identification: a double challenge called ADIAC. In: Proceedings ICIAP, Venice, pp. 734–739 (1999)
Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and analysis in 2D and 3D tera-scale data sets. IEEE Trans. Image Proc. 30, 3664–3675 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Wilkinson, M.H.F. (2022). Component-Tree Simplification Through Fast Alpha Cuts. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)