iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19897-7_11
Topological Analysis of Simple Segmentation Maps | SpringerLink
Skip to main content

Topological Analysis of Simple Segmentation Maps

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Abstract

In this paper, we propose a geometry-aware topological analysis of a segmentation of an image into regions which might correspond, for example, to a geographical map or to segmented cells in a microscopic image of a biological packed tissue. The regions must satisfy that the centroid of each one lies inside the region itself. We propose a novel simplicial complex modeling such data, for persistent homology computation, that better respects the geometry of the regions than existing techniques. More specifically, our approach joins benefits from previous models by encoding both neighbouring relations between the regions, as well as spatial distribution of the set of centroids. In addition, we introduce geometric information regarding distances between centroids and boundaries delimiting each region.

This research was funded by Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación/10.13039/501100011033, grant PID2019-107339GB-I00 and Agencia Andaluza del Conocimiento, grant PAIDI-2020 P20-01145. Authors listed in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atienza, N., Escudero, L.M., Jimenez, M.J., Soriano-Trigueros, M.: Characterising epithelial tissues using persistent entropy. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds.) CTIC 2019. LNCS, vol. 11382, pp. 179–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10828-1_14

    Chapter  Google Scholar 

  2. Atienza, N., Jimenez, M.J., Soriano-Trigueros, M.: Stable topological summaries for analyzing the organization of cells in a packed tissue. Mathematics 9(15) (2021). https://doi.org/10.3390/math9151723. https://www.mdpi.com/2227-7390/9/15/1723

  3. Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)

    Article  MathSciNet  Google Scholar 

  4. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have L p-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)

    Google Scholar 

  6. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson International Content (2018)

    Google Scholar 

  8. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

    Google Scholar 

  9. Jimenez, M.J., Rucco, M., Vicente-Munuera, P., Gómez-Gálvez, P., Escudero, L.M.: Topological data analysis for self-organization of biological tissues. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 229–242. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_18

    Chapter  MATH  Google Scholar 

  10. Kaliman, S., Jayachandran, C., Rehfeldt, F., Smith, A.S.: Limits of applicability of the Voronoi tessellation determined by centers of cell nuclei to epithelium morphology. Front. Physiol. 7(551) (2016). https://doi.org/10.3389/fphys.2016.00551

  11. Klette, G.: Simple points in 2D and 3D binary images. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 57–64. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45179-2_8

    Chapter  Google Scholar 

  12. Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989). https://doi.org/10.1016/0734-189X(89)90147-3. https://www.sciencedirect.com/science/article/pii/0734189X89901473

  13. Suzuki, A., Iri, M.: Approximation of a tessellation of the plane by a Voronoi diagram. J. Oper. Res. Soc. Jpn. 29(I) (1986)

    Google Scholar 

  14. Villoutreix, P.: Randomness and variability in animal embryogenesis, a multi-scale approach. Ph.D. thesis, Université Sorbonne Paris Cité (2015)

    Google Scholar 

  15. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2004). https://doi.org/10.1007/s00454-004-1146-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Jose Jimenez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez, MJ., Medrano, B. (2022). Topological Analysis of Simple Segmentation Maps. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics