Abstract
In this paper, we propose a geometry-aware topological analysis of a segmentation of an image into regions which might correspond, for example, to a geographical map or to segmented cells in a microscopic image of a biological packed tissue. The regions must satisfy that the centroid of each one lies inside the region itself. We propose a novel simplicial complex modeling such data, for persistent homology computation, that better respects the geometry of the regions than existing techniques. More specifically, our approach joins benefits from previous models by encoding both neighbouring relations between the regions, as well as spatial distribution of the set of centroids. In addition, we introduce geometric information regarding distances between centroids and boundaries delimiting each region.
This research was funded by Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación/10.13039/501100011033, grant PID2019-107339GB-I00 and Agencia Andaluza del Conocimiento, grant PAIDI-2020 P20-01145. Authors listed in alphabetical order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atienza, N., Escudero, L.M., Jimenez, M.J., Soriano-Trigueros, M.: Characterising epithelial tissues using persistent entropy. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds.) CTIC 2019. LNCS, vol. 11382, pp. 179–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10828-1_14
Atienza, N., Jimenez, M.J., Soriano-Trigueros, M.: Stable topological summaries for analyzing the organization of cells in a packed tissue. Mathematics 9(15) (2021). https://doi.org/10.3390/math9151723. https://www.mdpi.com/2227-7390/9/15/1723
Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have L p-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson International Content (2018)
Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)
Jimenez, M.J., Rucco, M., Vicente-Munuera, P., Gómez-Gálvez, P., Escudero, L.M.: Topological data analysis for self-organization of biological tissues. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 229–242. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_18
Kaliman, S., Jayachandran, C., Rehfeldt, F., Smith, A.S.: Limits of applicability of the Voronoi tessellation determined by centers of cell nuclei to epithelium morphology. Front. Physiol. 7(551) (2016). https://doi.org/10.3389/fphys.2016.00551
Klette, G.: Simple points in 2D and 3D binary images. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 57–64. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45179-2_8
Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989). https://doi.org/10.1016/0734-189X(89)90147-3. https://www.sciencedirect.com/science/article/pii/0734189X89901473
Suzuki, A., Iri, M.: Approximation of a tessellation of the plane by a Voronoi diagram. J. Oper. Res. Soc. Jpn. 29(I) (1986)
Villoutreix, P.: Randomness and variability in animal embryogenesis, a multi-scale approach. Ph.D. thesis, Université Sorbonne Paris Cité (2015)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2004). https://doi.org/10.1007/s00454-004-1146-y
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Jimenez, MJ., Medrano, B. (2022). Topological Analysis of Simple Segmentation Maps. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)