iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19833-5_9
Self-supervised Social Relation Representation for Human Group Detection | SpringerLink
Skip to main content

Self-supervised Social Relation Representation for Human Group Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Human group detection, which splits crowd of people into groups, is an important step for video-based human social activity analysis. The core of human group detection is the human social relation representation and division. In this paper, we propose a new two-stage multi-head framework for human group detection. In the first stage, we propose a human behavior simulator head to learn the social relation feature embedding, which is self-supervised trained by leveraging the socially grounded multi-person behavior relationship. In the second stage, based on the social relation embedding, we develop a self-attention inspired network for human group detection. Remarkable performance on two state-of-the-art large-scale benchmarks, i.e., PANDA and JRDB-Group, verifies the effectiveness of the proposed framework. Benefiting from the self-supervised social relation embedding, our method can provide promising results with very few (labeled) training data. We have released the source code to the public.

J. Li and R. Han—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If a subject is missing in a frame, we fill it with blank (all-zero feature vector).

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  2. Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene understanding: end-to-end multi-person action localization and collective activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  3. Bazzani, L., Cristani, M., Murino, V.: Decentralized particle filter for joint individual-group tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  4. Chang, M.C., Krahnstoever, N., Ge, W.: Probabilistic group-level motion analysis and scenario recognition. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  5. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  6. Choi, W., Chao, Y.W., Pantofaru, C., Savarese, S.: Discovering groups of people in images. In: European Conference on Computer Vision (2014). https://doi.org/10.1007/978-3-319-10593-2_28

  7. Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., Rezatofighi, H.: Joint learning of social groups, individuals action and sub-group activities in videos. In: European Conference on Computer Vision (2020)

    Google Scholar 

  8. Ehsanpour, M., Saleh, F., Savarese, S., Reid, I., Rezatofighi, H.: JRDB-Act: a large-scale multi-modal dataset for spatio-temporal action, social group and activity detection. arXiv Preprint arXiv:2106.08827 (2021)

  9. Ehsanpour, M., Saleh, F.S., Savarese, S., Reid, I.D., Rezatofighi, H.: JRDB-Act: a large-scale dataset for spatio-temporal action, social group and activity detection (2021)

    Google Scholar 

  10. Fan, L., Wang, W., Huang, S., Tang, X., Zhu, S.C.: Understanding human gaze communication by spatio-temporal graph reasoning. In: IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  11. Feldmann, M., Fränken, D., Koch, W.: Tracking of extended objects and group targets using random matrices. IEEE Trans. Signal Process. 59(4), 1409–1420 (2010)

    Article  Google Scholar 

  12. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: GD-GAN: generative adversarial networks for trajectory prediction and group detection in crowds. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 314–330. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_20

    Chapter  Google Scholar 

  13. Gan, Y., Han, R., Yin, L., Feng, W., Wang, S.: Self-supervised multi-view multi-human association and tracking. In: ACM International Conference on Multimedia (2021)

    Google Scholar 

  14. Gavrilyuk, K., Sanford, R., Javan, M., Snoek, C.G.: Actor-transformers for group activity recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  15. Ge, W., Collins, R.T., Ruback, R.B.: Vision-based analysis of small groups in pedestrian crowds. IEEE Trans. Patt. Anal. Mach. Intell. 34(5), 1003–1016 (2012)

    Article  Google Scholar 

  16. Goel, A., Ma, K.T., Tan, C.: An end-to-end network for generating social relationship graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  17. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  18. Han, R., Feng, W., Zhang, Y., Zhao, J., Wang, S.: Multiple human association and tracking from egocentric and complementary top views. IEEE TPAMI (2021). https://doi.org/10.1109/TPAMI.2021.3070562

  19. Han, R., et al.: Complementary-view multiple human tracking. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  20. Han, R., Gan, Y., Li, J., Wang, F., Feng, W., Wang, S.: Connecting the complementary-view videos: joint camera identification and subject association. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  21. Han, R., Wang, Y., Yan, H., Feng, W., Wang, S.: Multi-view multi-human association with deep assignment network. IEEE TIP 31, 1830–1840 (2022)

    Google Scholar 

  22. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum (2007)

    Google Scholar 

  23. Li, W., Duan, Y., Lu, J., Feng, J., Zhou, J.: Graph-based social relation reasoning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_2

    Chapter  Google Scholar 

  24. Martín-Martín, R., et al.: JRDB: a dataset and benchmark of egocentric robot visual perception of humans in built environments. IEEE Trans. Patt. Anal. Mach. Intell. (2021)

    Google Scholar 

  25. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  26. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Google Scholar 

  27. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS One 5(4), e10047 (2010)

    Google Scholar 

  28. Pang, S.K., Li, J., Godsill, S.J.: Detection and tracking of coordinated groups. IEEE Trans. Aerosp. Electron. Syst. 47(1), 472–502 (2011)

    Article  Google Scholar 

  29. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  30. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: European Conference on Computer Vision (2010)

    Google Scholar 

  31. Pramono, R.R.A., Chen, Y.T., Fang, W.H.: Empowering relational network by self-attention augmented conditional random fields for group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 71–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_5

    Chapter  Google Scholar 

  32. Shao, J., Dong, N., Zhao, Q.: A real-time algorithm for small group detection in medium density crowds. Patt. Recognit. Image Anal. 28(2), 282–287 (2018)

    Article  Google Scholar 

  33. Shao, J., Loy, C.C., Wang, X.: Scene-independent group profiling in crowd. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  34. Solera, F., Calderara, S., Cucchiara, R.: Socially constrained structural learning for groups detection in crowd. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 995–1008 (2015)

    Article  Google Scholar 

  35. Swofford, M., et al.: Improving social awareness through DANTE: deep affinity network for clustering conversational interactants. ACM Hum.-Comput. Interact. 4(CSCW1), 1–23 (2020)

    Article  Google Scholar 

  36. Thompson, S., Gupta, A., Gupta, A.W., Chen, A., Vázquez, M.: Conversational group detection with graph neural networks. In: International Conference on Multimodal Interaction (2021)

    Google Scholar 

  37. Turner, J.C.: Towards a cognitive redefinition of the social group. In: Research Colloquium on Social Identity of the European Laboratory of Social Psychology. Psychology Press (2010)

    Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  39. Wang, X., et al.: PANDA: a gigapixel-level human-centric video dataset. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  40. Wu, J., Wang, L., Wang, L., Guo, J., Wu, G.: Learning actor relation graphs for group activity recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  41. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  42. Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: Social adaptive module for weakly-supervised group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 208–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_13

    Chapter  Google Scholar 

  43. Yuan, H., Ni, D.: Learning visual context for group activity recognition. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  44. Zhan, X., Liu, Z., Yan, J., Lin, D., Loy, C.C.: Consensus-driven propagation in massive unlabeled data for face recognition. In: European Conference on Computer Vision (2018)

    Google Scholar 

  45. Zhao, J., Han, R., Gan, Y., Wan, L., Feng, W., Wang, S.: Human identification and interaction detection in cross-view multi-person videos with wearable cameras. In: ACM International Conference on Multimedia (2020)

    Google Scholar 

  46. Zhou, T., Wang, W., Qi, S., Ling, H., Shen, J.: Cascaded human-object interaction recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  47. Zou, C., et al.: End-to-end human object interaction detection with HOI transformer. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants U1803264, 62072334, and the Tianjin Research Innovation Project for Postgraduate Students under Grant 2021YJSB174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruize Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2483 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Han, R., Yan, H., Qian, Z., Feng, W., Wang, S. (2022). Self-supervised Social Relation Representation for Human Group Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics