iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19803-8_40
RadioTransformer: A Cascaded Global-Focal Transformer for Visual Attention–Guided Disease Classification | SpringerLink
Skip to main content

RadioTransformer: A Cascaded Global-Focal Transformer for Visual Attention–Guided Disease Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

In this work, we present RadioTransformer, a novel student-teacher transformer framework, that leverages radiologists’ gaze patterns and models their visuo-cognitive behavior for disease diagnosis on chest radiographs. Domain experts, such as radiologists, rely on visual information for medical image interpretation. On the other hand, deep neural networks have demonstrated significant promise in similar tasks even where visual interpretation is challenging. Eye-gaze tracking has been used to capture the viewing behavior of domain experts, lending insights into the complexity of visual search. However, deep learning frameworks, even those that rely on attention mechanisms, do not leverage this rich domain information for diagnostic purposes. RadioTransformerfills this critical gap by learning from radiologists’ visual search patterns, encoded as ‘human visual attention regions’ in a cascaded global-focal transformer framework. The overall ‘global’ image characteristics and the more detailed ‘local’ features are captured by the proposed global and focal modules, respectively. We experimentally validate the efficacy of RadioTransformeron 8 datasets involving different disease classification tasks where eye-gaze data is not available during the inference phase. Code: https://github.com/bmi-imaginelab/radiotransformer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Bertram, R., et al.: Eye movements of radiologists reflect expertise in CT study interpretation: a potential tool to measure resident development. Radiology 281(3), 805–815 (2016)

    MathSciNet  Google Scholar 

  3. Canayaz, M.: MH-COVIDNet: diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images. Biomed. Signal Process. Control 64, 102257 (2021)

    Google Scholar 

  4. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  5. Cheerla, A., Gevaert, O.: Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35(14), i446–i454 (2019)

    Google Scholar 

  6. Chen, B., Li, J., Lu, G., Yu, H., Zhang, D.: Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification. IEEE J. Biomed. Health Inform. 24(8), 2292–2302 (2020)

    Google Scholar 

  7. Chen, B., Zhang, Z., Li, Y., Lu, G., Zhang, D.: Multi-label chest x-ray image classification via semantic similarity graph embedding. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2455–2468 (2021)

    Google Scholar 

  8. Chollet, F., et al.: Keras: deep learning library for Theano and TensorFlow. https://keras.io/k 7(8), T1 (2015)

  9. Chowdhury, M.E.H., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020). https://doi.org/10.1109/ACCESS.2020.3010287

    Article  Google Scholar 

  10. Christoph, R., Pinz, F.A.: Spatiotemporal residual networks for video action recognition. In: Advances in Neural Information Processing Systems, pp. 3468–3476 (2016)

    Google Scholar 

  11. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  14. Fox, S.E., Faulkner-Jones, B.E.: Eye-tracking in the study of visual expertise: methodology and approaches in medicine. Frontline Learn. Res. 5(3), 29–40 (2017)

    Google Scholar 

  15. van der Gijp, A., et al.: How visual search relates to visual diagnostic performance: a narrative systematic review of eye-tracking research in radiology. Adv. Health Sci. Educ. 22(3), 765–787 (2016). https://doi.org/10.1007/s10459-016-9698-1

    Article  Google Scholar 

  16. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  17. Hanna, T.N., et al.: The effects of fatigue from overnight shifts on radiology search patterns and diagnostic performance. J. Am. Coll. Radiol. 15(12), 1709–1716 (2018)

    Google Scholar 

  18. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704 (2021)

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  21. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  22. Huang, Y., Cai, M., Li, Z., Lu, F., Sato, Y.: Mutual context network for jointly estimating egocentric gaze and action. IEEE Trans. Image Process. 29, 7795–7806 (2020)

    MATH  Google Scholar 

  23. Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T., Parvez, M.Z.: CoroDet: a deep learning based classification for COVID-19 detection using chest X-ray images. Chaos, Solitons Fractals 142, 110495 (2021)

    MathSciNet  Google Scholar 

  24. Itti, L.: Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Vis. Cogn. 12(6), 1093–1123 (2005)

    Google Scholar 

  25. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vision. Res. 49(10), 1295–1306 (2009)

    Google Scholar 

  26. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision. Res. 40(10–12), 1489–1506 (2000)

    Google Scholar 

  27. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)

    Google Scholar 

  28. Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L.A., Mark IV, R.: MIMIC-IV (version 0.4). PhysioNet (2020)

    Google Scholar 

  29. Johnson, A., Pollard, T., Mark, R., Berkowitz, S., Horng, S.: MIMIC-CXR database. PhysioNet (2019). https://doi.org/10.13026/C2JT1Q

  30. Kar, A., Corcoran, P.: A review and analysis of eye-gaze estimation systems, algorithms and performance evaluation methods in consumer platforms. IEEE Access 5, 16495–16519 (2017)

    Google Scholar 

  31. Karargyris, A., et al.: Eye gaze data for chest x-rays

    Google Scholar 

  32. Karargyris, A., et al.: Creation and validation of a chest x-ray dataset with eye-tracking and report dictation for AI development. Sci. Data 8(1), 1–18 (2021)

    Google Scholar 

  33. Kelly, B.S., Rainford, L.A., Darcy, S.P., Kavanagh, E.C., Toomey, R.J.: The development of expertise in radiology: in chest radiograph interpretation,“expert’’ search pattern may predate “expert’’ levels of diagnostic accuracy for pneumothorax identification. Radiology 280(1), 252–260 (2016)

    Google Scholar 

  34. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Google Scholar 

  35. Kleinke, C.L.: Gaze and eye contact: a research review. Psychol. Bull. 100(1), 78 (1986)

    Google Scholar 

  36. Konwer, A., et al.: Attention-based multi-scale gated recurrent encoder with novel correlation loss for COVID-19 progression prediction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 824–833. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_79

    Chapter  Google Scholar 

  37. Kundel, H.L., Nodine, C.F., Krupinski, E.A.: Computer-displayed eye position as a visual aid to pulmonary nodule interpretation. Invest. Radiol. 25(8), 890–896 (1990)

    Google Scholar 

  38. Lakhani, P., et al.: The 2021 SIIM-FISABIO-RSNA machine learning COVID-19 challenge: annotation and standard exam classification of COVID-19 chest radiographs (2021)

    Google Scholar 

  39. Lee, A., et al.: Identification of gaze pattern and blind spots by upper gastrointestinal endoscopy using an eye-tracking technique. Surg. Endosc. 36, 2574–2581 (2021). https://doi.org/10.1007/s00464-021-08546-3

    Article  Google Scholar 

  40. Lévêque, L., Bosmans, H., Cockmartin, L., Liu, H.: State of the art: eye-tracking studies in medical imaging. IEEE Access 6, 37023–37034 (2018)

    Google Scholar 

  41. Li, Y., Liu, M., Rehg, J.: In the eye of the beholder: gaze and actions in first person video. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  42. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  43. Litchfield, D., Ball, L.J., Donovan, T., Manning, D.J., Crawford, T.: Viewing another person’s eye movements improves identification of pulmonary nodules in chest x-ray inspection. J. Exp. Psychol. Appl. 16(3), 251 (2010)

    Google Scholar 

  44. Liu, Y., et al.: Goal-oriented gaze estimation for zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3794–3803 (2021)

    Google Scholar 

  45. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  46. Mackworth, N.H., Morandi, A.J.: The gaze selects informative details within pictures. Percept. Psychophys. 2(11), 547–552 (1967)

    Google Scholar 

  47. Mahmud, T., Rahman, M.A., Fattah, S.A.: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput. Biol. Med. 122, 103869 (2020)

    Google Scholar 

  48. Mall, S., Brennan, P.C., Mello-Thoms, C.: Can a machine learn from radiologists’ visual search behaviour and their interpretation of mammograms–a deep-learning study. J. Digit. Imaging 32(5), 746–760 (2019)

    Google Scholar 

  49. Mathe, S., Sminchisescu, C.: Dynamic eye movement datasets and learnt saliency models for visual action recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 842–856. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_60

    Chapter  Google Scholar 

  50. McLaughlin, L., Hughes, C., Bond, R., McConnell, J., Cairns, A., McFadden, S.: The effect of a digital training tool to aid chest image interpretation: hybridising eye tracking technology and a decision support tool. Radiography 27(2), 505–511 (2021)

    Google Scholar 

  51. Min, K., Corso, J.J.: Integrating human gaze into attention for egocentric activity recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1069–1078 (2021)

    Google Scholar 

  52. Mishra, A., Aloimonos, Y., Fah, C.L.: Active segmentation with fixation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 468–475. IEEE (2009)

    Google Scholar 

  53. Modi, N., Singh, J.: A review of various state of art eye gaze estimation techniques. In: Advances in Computational Intelligence and Communication Technology, pp. 501–510 (2021)

    Google Scholar 

  54. Mondal, A.K., Bhattacharjee, A., Singla, P., Prathosh, A.P.: xViTCOS: explainable vision transformer based COVID-19 screening using radiography. IEEE J. Transl. Eng. Health Med. 10, 1–10 (2021)

    Google Scholar 

  55. Moser, T., Lohmeyer, Q., Meboldt, M., Distler, O., Becker, M.O.: Visual assessment of digital ulcers in systemic sclerosis analysed by eye tracking: implications for wound assessment. Clin. Exp. Rheumatol. 38(3), 137–139 (2020)

    Google Scholar 

  56. Murray, I., Plainis, S.: Contrast coding and magno/parvo segregation revealed in reaction time studies. Vision. Res. 43(25), 2707–2719 (2003)

    Google Scholar 

  57. Nguyen, H.Q., et al.: VinDr-CXR: an open dataset of chest X-rays with radiologist’s annotations. Sci. Data 9, 429 (2022). https://doi.org/10.1038/s41597-022-01498-w

    Article  Google Scholar 

  58. Papadopoulos, D.P., Clarke, A.D.F., Keller, F., Ferrari, V.: Training object class detectors from eye tracking data. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 361–376. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_24

    Chapter  Google Scholar 

  59. Park, S., et al.: Vision transformer for COVID-19 CXR diagnosis using chest x-ray feature corpus. arXiv preprint arXiv:2103.07055 (2021)

  60. Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vision. Res. 42(1), 107–123 (2002)

    Google Scholar 

  61. Patra, A., et al.: Efficient ultrasound image analysis models with sonographer gaze assisted distillation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 394–402. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_43

    Chapter  Google Scholar 

  62. Prasanna, P., et al.: Radiographic-deformation and textural heterogeneity (r-DepTH): an integrated descriptor for brain tumor prognosis. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 459–467. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_52

    Chapter  Google Scholar 

  63. Rahman, T., et al.: Exploring the effect of image enhancement techniques on COVID-19 detection using chest x-ray images. Comput. Biol. Med. 132, 104319 (2021)

    Google Scholar 

  64. Rajpurkar, P., et al.: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 15(11), e1002686 (2018)

    Google Scholar 

  65. Rajpurkar, P., et al.: CheXnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  66. Ramanathan, S., Katti, H., Sebe, N., Kankanhalli, M., Chua, T.-S.: An eye fixation database for saliency detection in images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 30–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_3

    Chapter  Google Scholar 

  67. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  68. Saltz, J., et al.: Stony brook university COVID-19 positive cases [data set] (2021)

    Google Scholar 

  69. Shapovalova, N., Raptis, M., Sigal, L., Mori, G.: Action is in the eye of the beholder: eye-gaze driven model for spatio-temporal action localization. In: Advances in Neural Information Processing Systems, pp. 2409–2417. Citeseer (2013)

    Google Scholar 

  70. Shih, G., et al.: Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia. Radiol. Artif. Intell. 1(1), e180041 (2019)

    Google Scholar 

  71. Stember, J.N., et al.: Eye tracking for deep learning segmentation using convolutional neural networks. J. Digit. Imaging 32(4), 597–604 (2019)

    Google Scholar 

  72. Tatler, B.W., Baddeley, R.J., Vincent, B.T.: The long and the short of it: spatial statistics at fixation vary with saccade amplitude and task. Vision. Res. 46(12), 1857–1862 (2006)

    Google Scholar 

  73. Taylor-Phillips, S., Stinton, C.: Fatigue in radiology: a fertile area for future research. Br. J. Radiol. 92(1099), 20190043 (2019)

    Google Scholar 

  74. Teixeira, V., Braz, L., Pedrini, H., Dias, Z.: DuaLAnet: dual lesion attention network for thoracic disease classification in chest X-rays. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 69–74. IEEE (2020)

    Google Scholar 

  75. Theeuwes, J.: Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. J. Exp. Psychol. Hum. Percept. Perform. 20(4), 799 (1994)

    Google Scholar 

  76. Theeuwes, J., Kramer, A.F., Hahn, S., Irwin, D.E., Zelinsky, G.J.: Influence of attentional capture on oculomotor control. J. Exp. Psychol. Hum. Percept. Perform. 25(6), 1595 (1999)

    Google Scholar 

  77. Tsai, E.B., et al.: Data from medical imaging data resource center (MIDRC) - RSNA international COVID radiology database (RICORD) release 1C - chest X-ray, COVID+ (MIDRC-RICORD-1C). Cancer Imaging Archive 6(7), 13 (2021)

    Google Scholar 

  78. Tsai, E.B., et al.: The RSNA international COVID-19 open radiology database (RICORD). Radiology 299(1), E204–E213 (2021)

    Google Scholar 

  79. Vasudevan, A.B., Dai, D., Van Gool, L.: Object referring in videos with language and human gaze. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4129–4138 (2018)

    Google Scholar 

  80. Vertinsky, T., Forster, B.: Prevalence of eye strain among radiologists: influence of viewing variables on symptoms. Am. J. Roentgenol. 184(2), 681–686 (2005)

    Google Scholar 

  81. Vig, E., Dorr, M., Cox, D.: Space-variant descriptor sampling for action recognition based on saliency and eye movements. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 84–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_7

    Chapter  Google Scholar 

  82. Waite, S., et al.: Analysis of perceptual expertise in radiology-current knowledge and a new perspective. Front. Hum. Neurosci. 13, 213 (2019)

    Google Scholar 

  83. Waite, S., et al.: Tired in the reading room: the influence of fatigue in radiology. J. Am. Coll. Radiol. 14(2), 191–197 (2017)

    Google Scholar 

  84. Wang, H., Wang, S., Qin, Z., Zhang, Y., Li, R., Xia, Y.: Triple attention learning for classification of 14 thoracic diseases using chest radiography. Med. Image Anal. 67, 101846 (2021)

    Google Scholar 

  85. Wang, L., Lin, Z.Q., Wong, A.: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10(1), 1–12 (2020). https://doi.org/10.1038/s41598-020-76550-z

    Article  Google Scholar 

  86. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  87. Wong, A., et al.: COVID-Net S: towards computer-aided severity assessment via training and validation of deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity. arXiv preprint arXiv:2005.12855 (2020)

  88. Yoonessi, A., Yoonessi, A.: Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications. J. Ophthalmic Vis. Res. 6(2), 119 (2011)

    Google Scholar 

  89. Yoshie, T., et al.: The influence of experience on gazing patterns during endovascular treatment: eye-tracking study. J. Neuroendovascular Ther. oa–2021 (2021)

    Google Scholar 

  90. Yun, K., Peng, Y., Samaras, D., Zelinsky, G.J., Berg, T.L.: Exploring the role of gaze behavior and object detection in scene understanding. Front. Psychol. 4, 917 (2013)

    Google Scholar 

  91. Yun, K., Peng, Y., Samaras, D., Zelinsky, G.J., Berg, T.L.: Studying relationships between human gaze, description, and computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 739–746 (2013)

    Google Scholar 

  92. Zimmermann, J.M., et al.: Quantification of avoidable radiation exposure in interventional fluoroscopy with eye tracking technology. Invest. Radiol. 55(7), 457–462 (2020)

    Google Scholar 

Download references

Acknowledgement

The reported research was partly supported by NIH 1R21CA258493-01A1, NIH 75N92020D00021 (subcontract), and the OVPR and IEDM seed grants at Stony Brook University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moinak Bhattacharya .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4718 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharya, M., Jain, S., Prasanna, P. (2022). RadioTransformer: A Cascaded Global-Focal Transformer for Visual Attention–Guided Disease Classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics