iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-19496-2_22
Data-driven-modelling and Control for a Class of Discrete-Time Robotic System Using an Adaptive Tuning for Pseudo Jacobian Matrix Algorithm | SpringerLink
Skip to main content

Data-driven-modelling and Control for a Class of Discrete-Time Robotic System Using an Adaptive Tuning for Pseudo Jacobian Matrix Algorithm

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13613))

Included in the following conference series:

  • 607 Accesses

Abstract

This paper proposes a data-driven modelling for a nonlinear discrete-time MIMO system in a robotic application, using a redundant robot for a trajectory tracking control of the end-effector. The Pseudo Jacobian Matrix computes an online equivalent model for the robotic system taking into account only two parameters tuning; the step parameter scales the estimation error and the weight parameter guarantees the estimation. The Lyapunov analysis based on a quadratic function in terms of the estimation error validates the setting parameters of the step parameter. A neuro-fuzzy network strcucture is used to adapt the step parameter considering the estimation error as input in oder to improve the identification of the Jacobian matrix during suddenly changes and uncertienties in the system. Besides, a novel control law is proposed for a trajectory tracking control based on a future function of the position error. The simulation results demonstrated the proposed data-driven model and control scheme for a redundant robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolton, W.: Instrumentation and control systems. Newnes (2021)

    Google Scholar 

  2. Gómez, J., Treesatayapun, C., Morales, A.: Free model task space controller based on adaptive gain for robot manipulator using Jacobian estimation. In: Batyrshin, I., Martínez-Villaseñor, M.L., Ponce Espinosa, H.E. (eds.) MICAI 2018. LNCS (LNAI), vol. 11289, pp. 264–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04497-8_22

    Chapter  Google Scholar 

  3. Gómez, J., Treesatayapun, C., Morales, A.: Multi-inputs and multi-outputs equivalent model based on data driven controller for a robotic system. IFAC-PapersOnLine 53(2), 9784–9789 (2020)

    Article  Google Scholar 

  4. Gómez, J., Treesatayapun, C., Morales, A.: Data-driven identification and control based on optic tracking feedback for robotic systems. Int. J. Adv. Manuf. Technol. 113(5), 1485–1503 (2021)

    Article  Google Scholar 

  5. Li, M., Kang, R., Branson, D.T., Dai, J.S.: Model-free control for continuum robots based on an adaptive Kalman filter. IEEE/ASME Trans. Mechatron. 23(1), 286–297 (2018)

    Article  Google Scholar 

  6. Liu, H., Cheng, Q., Xiao, J., Hao, L.: Data-driven optimal tracking control for SMA actuated systems with prescribed performance via reinforcement learning. Mech. Syst. Signal Process. 177, 109191 (2022)

    Article  Google Scholar 

  7. Liu, H., Cheng, Q., Xiao, J., Hao, L.: Performance-based data-driven optimal tracking control of shape memory alloy actuated manipulator through reinforcement learning. Eng. Appl. Artif. Intell. 114, 105060 (2022)

    Article  Google Scholar 

  8. Treesatayapun, C.: Fuzzy rules emulated discrete-time controller based on plant’s input-output association. J. Control, Autom. Electr. Syst. 30(6), 902–910 (2019)

    Article  Google Scholar 

  9. Treesatayapun, C., Uatrongjit, S.: Adaptive controller with fuzzy rules emulated structure and its applications. Eng. Appl. Artif. Intell. 18(5), 603–615 (2005)

    Article  Google Scholar 

  10. Zen, Z., Cao, R., Hou, Z.: MIMO model free adaptive control of two degree of freedom manipulator. In: 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), pp. 693–697. IEEE (2018)

    Google Scholar 

Download references

Acknowledgments

The authors thank to the Facultad de Ingeniería de la Universidad Autónoma de Coahuila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez, J., Morales, A., Treesatayapun, C., Muñiz, R. (2022). Data-driven-modelling and Control for a Class of Discrete-Time Robotic System Using an Adaptive Tuning for Pseudo Jacobian Matrix Algorithm. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13613. Springer, Cham. https://doi.org/10.1007/978-3-031-19496-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19496-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19495-5

  • Online ISBN: 978-3-031-19496-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics