Abstract
Since the morphology of retinal vessels plays a pivotal role in clinical diagnosis of eye-related diseases and diabetic retinopathy, retinal vessels segmentation is an indispensable step for the screening and diagnosis of retinal diseases, yet it is still a challenging problem due to the complex structure of retinal vessels. Current retinal vessels segmentation approaches roughly fall into image-level and patches-level methods based on the input type, while each has its own strengths and weaknesses. To benefit from both of the input forms, we introduce a Dual Branch Transformer Module (DBTM) that can simultaneously and fully enjoy the patches-level local information and the image-level global context. Besides, the retinal vessels are long-span, thin, and distributed in strips, making the square kernel of classic convolutional neural network false as it is only suitable for most natural objects with bulk shape. To better capture context information, we further design an Adaptive Strip Upsampling Block (ASUB) to adapt to the striped distribution of the retinal vessels. Based on the above innovations, we propose a retinal vessels segmentation Network with Dual Branch Transformer and Adaptive Strip Upsampling (DA-Net). Experiments validate that our DA-Net outperforms other state-of-the-art methods on both DRIVE and CHASE-DB1 datasets.
C. Wang and R. Xu—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7(3), e32435 (2012)
Chen, D., Yang, W., Wang, L., Tan, S., Lin, J., Bu, W.: PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation. PLoS ONE 17(1), e0262689 (2022)
Chen, Z., et al.: DPT: deformable patch-based transformer for visual recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2899–2907 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)
Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Engin. 59(9), 2538–2548 (2012)
Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)
Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79
Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2016)
Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Son, J., Park, S.J., Jung, K.H.: Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv preprint arXiv:1706.09318 (2017)
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)
Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10
Wang, C., et al.: Accurate lung nodules segmentation with detailed representation transfer and soft mask supervision. arXiv preprint arXiv:2007.14556 (2020)
Wang, C., Xu, R., Zhang, Y., Xu, S., Zhang, X.: Retinal vessel segmentation via context guide attention net with joint hard sample mining strategy. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1319–1323. IEEE (2021)
Wang, K., Zhang, X., Huang, S., Wang, Q., Chen, F.: CTF-Net: retinal vessel segmentation via deep coarse-to-fine supervision network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1237–1241. IEEE (2020)
Wu, H., Wang, W., Zhong, J., Lei, B., Wen, Z., Qin, J.: SCS-Net: a scale and context sensitive network for retinal vessel segmentation. Med. Image Anal. 70, 102025 (2021)
Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14
Xu, R., Li, Y., Wang, C., Xu, S., Meng, W., Zhang, X.: Instance segmentation of biological images using graph convolutional network. Eng. Appl. Artif. Intell. 110, 104739 (2022)
Xu, R., Wang, C., Xu, S., Meng, W., Zhang, X.: DC-Net: dual context network for 2D medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 503–513. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_48
Yan, Z., Yang, X., Cheng, K.T.: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 65(9), 1912–1923 (2018)
Yang, T., Wu, T., Li, L., Zhu, C.: SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J. Digit. Imaging 33(4), 946–957 (2020)
Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)
Acknowledgements
This work is supported by the National Key R &D Program of China (No. 2020YFC2008500, 2020YFC2008503), the National Natural Science Foundation of China (Nos. 61972459, 61971418 and 62071157), the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences (No. LSU-KFJJ-2020-04).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, C., Xu, R., Xu, S., Meng, W., Zhang, X. (2022). DA-Net: Dual Branch Transformer and Adaptive Strip Upsampling for Retinal Vessels Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-16434-7_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16433-0
Online ISBN: 978-3-031-16434-7
eBook Packages: Computer ScienceComputer Science (R0)