iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-16434-7_51
DA-Net: Dual Branch Transformer and Adaptive Strip Upsampling for Retinal Vessels Segmentation | SpringerLink
Skip to main content

DA-Net: Dual Branch Transformer and Adaptive Strip Upsampling for Retinal Vessels Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

Since the morphology of retinal vessels plays a pivotal role in clinical diagnosis of eye-related diseases and diabetic retinopathy, retinal vessels segmentation is an indispensable step for the screening and diagnosis of retinal diseases, yet it is still a challenging problem due to the complex structure of retinal vessels. Current retinal vessels segmentation approaches roughly fall into image-level and patches-level methods based on the input type, while each has its own strengths and weaknesses. To benefit from both of the input forms, we introduce a Dual Branch Transformer Module (DBTM) that can simultaneously and fully enjoy the patches-level local information and the image-level global context. Besides, the retinal vessels are long-span, thin, and distributed in strips, making the square kernel of classic convolutional neural network false as it is only suitable for most natural objects with bulk shape. To better capture context information, we further design an Adaptive Strip Upsampling Block (ASUB) to adapt to the striped distribution of the retinal vessels. Based on the above innovations, we propose a retinal vessels segmentation Network with Dual Branch Transformer and Adaptive Strip Upsampling (DA-Net). Experiments validate that our DA-Net outperforms other state-of-the-art methods on both DRIVE and CHASE-DB1 datasets.

C. Wang and R. Xu—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7(3), e32435 (2012)

    Article  Google Scholar 

  2. Chen, D., Yang, W., Wang, L., Tan, S., Lin, J., Bu, W.: PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation. PLoS ONE 17(1), e0262689 (2022)

    Article  Google Scholar 

  3. Chen, Z., et al.: DPT: deformable patch-based transformer for visual recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2899–2907 (2021)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  6. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Engin. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  7. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  8. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

  10. Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2016)

    Article  Google Scholar 

  11. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Son, J., Park, S.J., Jung, K.H.: Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv preprint arXiv:1706.09318 (2017)

  15. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  16. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  17. Wang, C., et al.: Accurate lung nodules segmentation with detailed representation transfer and soft mask supervision. arXiv preprint arXiv:2007.14556 (2020)

  18. Wang, C., Xu, R., Zhang, Y., Xu, S., Zhang, X.: Retinal vessel segmentation via context guide attention net with joint hard sample mining strategy. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1319–1323. IEEE (2021)

    Google Scholar 

  19. Wang, K., Zhang, X., Huang, S., Wang, Q., Chen, F.: CTF-Net: retinal vessel segmentation via deep coarse-to-fine supervision network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1237–1241. IEEE (2020)

    Google Scholar 

  20. Wu, H., Wang, W., Zhong, J., Lei, B., Wen, Z., Qin, J.: SCS-Net: a scale and context sensitive network for retinal vessel segmentation. Med. Image Anal. 70, 102025 (2021)

    Article  Google Scholar 

  21. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14

    Chapter  Google Scholar 

  22. Xu, R., Li, Y., Wang, C., Xu, S., Meng, W., Zhang, X.: Instance segmentation of biological images using graph convolutional network. Eng. Appl. Artif. Intell. 110, 104739 (2022)

    Article  Google Scholar 

  23. Xu, R., Wang, C., Xu, S., Meng, W., Zhang, X.: DC-Net: dual context network for 2D medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 503–513. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_48

    Chapter  Google Scholar 

  24. Yan, Z., Yang, X., Cheng, K.T.: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 65(9), 1912–1923 (2018)

    Article  Google Scholar 

  25. Yang, T., Wu, T., Li, L., Zhu, C.: SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J. Digit. Imaging 33(4), 946–957 (2020)

    Article  Google Scholar 

  26. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)

    Article  Google Scholar 

  27. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R &D Program of China (No. 2020YFC2008500, 2020YFC2008503), the National Natural Science Foundation of China (Nos. 61972459, 61971418 and 62071157), the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences (No. LSU-KFJJ-2020-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibiao Xu or Weiliang Meng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 105 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Xu, R., Xu, S., Meng, W., Zhang, X. (2022). DA-Net: Dual Branch Transformer and Adaptive Strip Upsampling for Retinal Vessels Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics